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Abstract—We propose a novel deformation corrected com-
pressed sensing (DC-CS) framework to recover contrast enhanced
dynamic magnetic resonance images from undersampled mea-
surements. We introduce a formulation that is capable of handling
a wide class of sparsity/compactness priors on the deformation
corrected dynamic signal. In this work, we consider example
compactness priors such as sparsity in temporal Fourier domain,
sparsity in temporal finite difference domain, and nuclear norm
penalty to exploit low rank structure. Using variable splitting,
we decouple the complex optimization problem to simpler and
well understood sub problems; the resulting algorithm alternates
between simple steps of shrinkage-based denoising, deformable
registration, and a quadratic optimization step. Additionally, we
employ efficient continuation strategies to reduce the risk of con-
vergence to local minima. The decoupling enabled by the proposed
scheme enables us to apply this scheme to contrast enhanced MRI
applications. Through experiments on numerical phantom and
in vivo myocardial perfusion MRI datasets, we observe superior
image quality of the proposed DC-CS scheme in comparison
to the classical k-t FOCUSS with motion estimation/correction
scheme, and demonstrate reduced motion artifacts over classical
compressed sensing schemes that utilize the compact priors on the
original deformation uncorrected signal.

Index Terms—Compressed sensing, deformation correction, dy-
namic MRI, low rank regularization.

I. INTRODUCTION

D YNAMIC magnetic resonance imaging (DMRI) involves
imaging objects that are evolving in time, and is central

to several clinical exams including cardiovascular, pulmonary,
abdominal, brain, and vocal tract imaging. DMRI often suffers
from compromises in image quality due to the slow acquisition
nature of MRI. For instance, good spatio-temporal resolution,
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extended slice coverage, and high signal to noise ratio are re-
quired for accurate quantification of myocardial perfusion MRI
data. However, imaging at Nyquist k-space sampling rate often
results in severe compromises in spatio-temporal resolution and
slice coverage [1]. Classical approaches to overcome these chal-
lenges include parallel imaging [2], [3], and their combination
with spatio-temporal models [4]–[11]. Recently, several
authors have proposed compressed sensing (CS) schemes that
capitalize on the compactness/sparsity of the signal representa-
tion in appropriate transform domains. For example, sparsity of
the temporal Fourier transform [12] and temporal finite differ-
ences [13] have been exploited in the context of myocardial per-
fusion MRI. More recently, matrix recovery schemes utilizing
the linear dependancies of pixel time profiles using low rank
image priors have been proposed [14]–[16]. While all of these
methods demonstrate successful recovery when the inter frame
motion is minimal, the main challenge is the sensitivity of these
methods to large inter frame motion. Specifically, the compact-
ness of the signal representation decreases with inter frame mo-
tion, thus restricting the maximum possible acceleration (see
Fig. 1 for a demonstration); the reconstructions often suffer from
temporal blurring and motion related artifacts at high accelera-
tion factors.
In this work, we introduce a general framework to minimize

the sensitivity of compressed sensing and low rank matrix re-
covery schemes to inter frame motion. We jointly estimate the
dynamic images and inter framemotion, which is modeled as an
elastic deformation, from the undersampled data. Rather than
assuming compactness of the original signal, we assume the
deformation corrected signal to have a compact representation.
The proposed approach enables us to use arbitrary signal priors
(e.g., sparsity in specified transform domain, low-rank prop-
erty, patch-based low-rank priors) in the reconstruction; the ap-
propriate method could be chosen depending on the specified
application. We introduce an efficient variable splitting frame-
work with continuation to decouple the problem into three sim-
pler and well-understood subproblems. We alternate between
1) a shrinkage-based denoising step 2) a deformable registra-
tion step, and 3) a quadratic optimization step. The deformable
registration scheme aims to register each frame in the dataset to
a corresponding frame with similar contrast in the motion-com-
pensated dataset. Hence, simpler least squares difference met-
rics are sufficient for the registration algorithm, even when the
image contrast changes with time, such as in dynamic contrast
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Fig. 1. Free breathing myocardial perfusion MRI data representation in transform domains with and without deformation correction: We show a few example
dynamic frames from a myocardial perfusionMRI dataset that contains considerable interframe motion in (a)–(c). The corresponding deformation/motion corrected
dataset is shown in (g)–(i). A mesh pattern is superimposed on the images for better visualization of the deformation. The image time profiles of the original and
deformation due to motion corrected datasets along the white dotted lines on the frames are shown in (d) and (j); the ripples in (d) correspond to the motion largely
due to breathing. The corresponding profile in (j) show that profile is largely free of the ripples. From (e) and (k), it can be seen that the deformation corrected
dataset has a sparser representation in the temporal Fourier domain, compared to the original data as the temporal harmonics corresponding to the motion are
compensated in (k). From (f), it can be seen that the pixel time profiles are more piece-wise smooth with the deformation corrected data compared to the original,
hence the former has more sparse temporal gradients. It is seen from (l) that the number of significant singular values are reduced in the deformation corrected
dataset compared to the original.

enhanced MRI. The presence of the global energy function en-
ables us to design appropriate continuation strategies to reduce
the risk of convergence of the algorithm to local minima. A pre-
liminary version of this work was published as a conference pro-
ceeding in [17].
In this paper, we demonstrate the utility of the proposed

formulation in the context of myocardial perfusion MRI. We
consider example compactness priors such as sparsity in the
temporal Fourier domain, sparsity in temporal finite difference
domain, and nuclear norm penalty to exploit low rank structure.
While the proposed formulation is capable of handling non-
convex variants of these priors ( , Schatten -norms )
and their combinations (e.g., [14]), these variants are beyond the
scope of this paper. Our experiments demonstrate the utility of
the proposed scheme in improving the reconstructions in terms
of reduced motion artifacts and better spatio-temporal fidelity
compared to schemes that utilize the compact priors on the
original deformation uncorrected signal. The proposed unified
energy minimization formulation is conceptually related to the
elegant work by Fessler et al. in the context of reconstructing a
static image of a moving organ from its measurements [18]. To
our knowledge, the earliest work in static MRI reconstruction
of a moving organ was by [19], and the earliest work of joint
image reconstruction and motion compensation in dynamic
imaging was in positron emission tomography [20], [21]. The
dynamic imaging approaches rely on the registration of each
frame of the dataset to a reference frame. Similar strategies
were recently introduced for CINE MRI. For example, Jung

et al., have extended the FOCUSS scheme with motion
estimation and compensation for cardiac cine MRI [22]. This
scheme approximate the dynamic images as the deformation
of fully sampled reference frames. The residuals are then
reconstructed from under-sampled -space data using
FOCUSS. Similarly, Asif et al. in [23] demonstrated a scheme
for cardiac cine MRI that alternate between motion estimation
and motion constrained CS reconstruction problems; the model
estimates the inter frame motion by registering neighboring
frames in the dynamic sequence. Other motion compensated
schemes customized to free breathing cardiac cine and delayed
enhancement MRI have also been introduced [24]–[28]. Unlike
cine MRI, the contrast of the dynamic perfusion images are
significantly different from the reference images. Hence, the
subtraction of the deformed reference image may not generate
sparse residuals. Moreover, more complex similarity measures
and models may be needed for the registration as image con-
trast varies significantly across time frames [29]–[34]. In the
context of contrast enhanced DMRI, Pederson et al. proposed
to unify the reconstruction of the images and the motion com-
pensation into a single algorithm [35]. They represented the
contrast variations using a parametric perfusion model, while
the deformation due to motion was modeled as a modulation of
a 2-D displacement field, which is estimated from two images
acquired at end inspiration and end expiration. The fewer
degrees of freedom in this model may be restrictive in prac-
tical perfusion imaging applications. In contrast, the proposed
model is considerably less constrained than the parametric



74 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 1, JANUARY 2015

scheme used in [35]. The proposed approach does not require
fully sampled pre-scans or navigators for motion estimation.
In addition, since we do not model the dynamic frames as
deformations of pre-contrast reference images, our approach is
robust to contrast variations due to bolus passage. Otazo et al. in
[36] partially corrected for the motion in myocardial perfusion
MRI using a rigid deformation model, where all the frames
from a preliminary CS reconstruction were mapped to a single
fully sampled reference image to estimate the motion. The
proposed scheme can be viewed as a systematic alternative for
patch-based low-rank methods that were recently introduced
[37], [38]. These methods cluster similar patches from adjacent
frames and enforce low-rank penalties on them. The main
challenge with these schemes is the extensive bookkeeping
to ensure that all patches are in some cluster. We have also
investigated the use of a model-based registration method to
handle simultaneous motion and changes in contrast [39].
The rest of the paper is organized as described. In Sections II

and III, we describe the formulation of the DC-CS problem,
the proposed variable splitting framework, and the resulting
optimization algorithm. In Sections IV and V, we present our
experimental evaluation and discussion on the feasibility of
the DC-CS algorithm to improve reconstruction quality of
free breathing myocardial perfusion MRI data based on retro-
spective resampling experiments on fully sampled numerical
phantom and in vivo datasets. We also demonstrate the feasi-
bility in improving free breathing reconstructions of radial data
from a subject imaged during adenosine stress perfusion.

II. DEFORMATION CORRECTED COMPRESSED SENSING
(DC-CS)

A. Dynamic Image Acquisition

The main objective of this paper is to recover the dynamic
dataset from its undersampled Fourier noisy measure-
ments . Here, is the spatial variable and denotes time.
The measurement process in dynamic MRI can be modeled as

(1)

Here, indicates the th sampling location in space.
We denote the set of sampling locations as

. The above expression can be rewritten in the
vector form as

(2)

where is an operator that evaluates the Fourier Transform on
the sampling locations specified in .

B. DC-CS Model

The pixel time profiles in myocardial perfusion MRI
are highly structured in the presence of perfect gating and
breath-holding. As demonstrated in Fig. 1, penalties such as
temporal Fourier sparsity (to exploit low temporal bandwidth),
temporal total variation penalty (to exploit smooth pixel time
profiles) or low-rank penalties (to exploit the redundancy

between the pixel time profiles) can be used to make the
recovery from under sampled data well posed. However, the
compactness of the signal representations will be considerably
disturbed in the presence of inter frame motion, which can
arise due to breathing or inconsistent gating (see Fig. 1); due to
which, the performance of the above schemes will be heavily
compromised.
We propose to overcome the above limitation by assuming

the deformation corrected dataset to be compact/sparse.
Note from Fig. 1(f), (j), (k), (l) that the temporal variations of

are considerably more structured than that of .1 We si-
multaneously recover the deformation parameters and
the dynamic images from under sampled data
using the following minimization scheme:

(3)
Here is the Fourier sampling operator as defined in (2) and
is the nonrigid image warping operator; are the deforma-
tion parameters that describe pixel wise displacements due to
motion, which are estimated from the under sampled data. The
proposed scheme also yield , which is the deformation
corrected version of , as a by-product. Note that (3) reduces to
the classical CS setting when : the identity operator. We
use bilinear interpolation to discretize the term .
The regularization term in (3) promotes the compactness/

sparsity of the deformation corrected dataset , rather than
. Here, denotes an arbitrary prior to exploit the redun-
dancy in the data; is the corresponding regularization pa-
rameter. The main advantage of the proposed scheme is that
it can be used with any spatio-temporal priors on the defor-
mation corrected dataset. The specific priors can be chosen de-
pending on the specific application. For example, we can choose

or , where and are the
temporal Fourier transform and temporal gradient operator, re-
spectively. Another alternative is to choose , the
nuclear norm of the Casorati matrix associated with
[9], [14]. This approach exploits the low-rank property of the
deformation/motion corrected dataset, resulting from the simi-
larity between the temporal profiles of the pixels [14]–[16]. The
ability of the scheme to handle arbitrary image priors makes this
approach drastically different from classical motion compensa-
tion schemes that register each frame of to a specific fully
sampled frame.
The deformation field in (3) is assumed to be parametrically

represented in terms of the parameters . For example, is
the set of B-spline coefficients if a B-spline model is used to
represent the deformation field as in [41] and [42]. In this case,
the spatial smoothness of the deformation map is controlled by
the grid spacing of the B-spline map. The spatial smoothness
constraints can also be explicitly imposed using regularization
constraints on the deformation field as in [43]. Our approach is
closely related to [43] as explained in detail in Section III-C.

1In Fig. 1, registration was performed on the free breathing dataset itself.
Starting from the second frame, the deformations were obtained by matching
the nth frame in the moving sequence to the th frame of the deformed
scene by using the demons registration algorithm [40].



LINGALA et al.: DEFORMATION CORRECTED COMPRESSED SENSING (DC-CS): A NOVEL FRAMEWORK FOR ACCELERATED DYNAMIC MRI 75

III. DC-CS: OPTIMIZATION ALGORITHM

We propose to use a variable splitting approach [44], [45] to
decouple the original problem in (3) to simpler subproblems.
We start by splitting the deformation term from the prior by in-
troducing an auxiliary variable . This enables us to reformu-
late the problem in (3) to the following constrained optimization
scheme:

(4)

We solve (4) using the penalty-based method, where the first
constraint in (4) is relaxed and the corresponding quadratic vi-
olation is penalized as

(5)

Here, is the penalty parameter that enforces the constraint
. When approaches , the solution of (5) tends to

that of (4), and equivalently (3). However, the convergence of
the algorithmwill be slowwhen is very high and the algorithm
may also be vulnerable to local minima. Hence, we will use a
continuation strategy where is initialized with very low values
and is gradually increased, as discussed in detail below.
We use an iterativeminimization scheme tominimize (5) with

respect to three variables , , . Specifically, the iterative al-
gorithm alternates between the minimization of each variable,
assuming the rest to be known. This approach results in the fol-
lowing sub problems.

A. Sub-Problem (Spatio-Temporal Denoising/Dealiasing
to Minimize Residual Motion)

With and fixed, the minimization of (5) with respect to
at each step is a denoising problem; it involves the proximal

mapping [46] of the deformation corrected dataset

(6)

Note that the above implies is close enough to , while having
a small cost . In many cases, we can find the analytically,
as seen in the below section.
The amount of regularization is specified by the parameter
. Specifically, when is small, the optimal is a highly
smoothed version of . At each step, the proximal mapping
smooths out the residual motion induced rapid temporal vari-
ations in the deformation corrected dataset , yielding
the next iterate of the motion compensated dataset . The al-
ternation of the subproblems (6), (13), and (14) results in the
joint estimation of the dynamic images and the deformation
map .
1) Sparsity Penalty in the Temporal Fourier Transform Do-

main: We denote as the temporal Fourier Transform
of . Using Parseval’s theorem, we rewrite (6) as

(7)

Note that this is a standard proximal mapping [46]. The op-
timal is obtained by the shrinkage of [47]

(8)

where is the shrinkage operator defined as

if
else.

(9)

2) Nuclear Norm Penalty: When , we rewrite
(6) as

(10)

where , are the Casorati matrices respectively associated
with and . The solution for the above proximal
mapping is obtained analytically as [48]

(11)

where is the singular value decomposition of ,
and is the shrinkage operator as defined in (9).
3) Temporal Total Variation (TV) Penalty: When the penalty

is chosen as the temporal total variation criterion, (6) reduces to

(12)

This TV denoising problem does not have an analytical solution
unlike the above cases. Hence, we solve them using the fast TV
denoising algorithm (FTVd) [49]. Briefly, this approach uses a
splitting of (12), followed by an alternating algorithm to solve
for .

B. Subproblem (Reconstruction Update)

Assuming and fixed in (5), the minimization with respect
to reduces to

(13)

We solve this quadratic problem using the conjugate gradient
(CG) algorithm. Note that when approaches infinity, tends to

, and (4) tends to (3), and the solution to the subproblem
in (13) tends to the solution of (3), which is the original problem
we seek to solve.

C. Subproblem (Motion Estimation)

Assuming the variables and in (5) to be known, we solve
for the motion parameters as

(14)
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This is a registration problem, where the dynamic scene
is registered frame by frame with a reference scene
. Since the reference series is derived from the mea-

surements itself [obtained from (6)], we do not need to acquire
additional high resolution reference frames. In addition, the
least squares similarity metric in (14) sufficient, even when
the contrast of the images are changing as a function of
time, because each frame of has the same contrast as

. The temporal profiles of the reference dataset is
significantly more smooth compared to . This approach en-
ables us to decouple the effects of smooth perfusion induced
contrast changes and the more rapid changes resulting from
respiratory motion.
The ideal deformable registration algorithm will directly

minimize (14) with a smoothness constraint on the deformation
field. In addition, the continuous deformable parameters should
be represented using a differentiable signal model such as
cubic B-spline representation [41], [42]. In this paper, we use
the demons algorithm [50], [51] to approximate (14). This is
largely motivated by available open source implementation
of the demons algorithm [40]. We observe that updating the
deformation map using the demons force field is a good approx-
imation to the steepest descent minimization of (14), subject to
elasticity regularization (see [52] for details). In addition, the
comparison of the demons algorithm and the direct steepest
descent minimization of (14) subject to elasticity regularization
is reported to provide qualitatively similar results [53]. We
consider the demons 2-D registration algorithm that corrects
for in-plane breathing motion, although in theory a model to
correct for out of plane motion could be considered, when
dealing with 3-D datasets. The demons algorithm is an iterative
scheme, where the displacement field is updated as

, where is the force field evaluated at
the th iteration. We refer the reader to [50], [51] for the
expression of the force field; the force field is derived from
intensity differences in the reference and target images. As
discussed previously, the smoothness of the deformation field
is implicitly enforced by spatial smoothing the force field
using an isotropic Gaussian filter , where is the stan-
dard deviation of the Gaussian kernel. Note that is the spatial
smoothness parameter, and allows for spatially regularizing the
deformation maps.

D. Continuation Strategies to Alternate Between the
Subproblems

The simultaneous estimation of and according to (3)
is a nonconvex optimization problem. The variable splitting
strategy described above enabled the decomposition of the
original problem into three simpler subproblems in (6), (13),
and (14). However, the algorithm is not guaranteed to con-
verge to the global minimum of the optimization problem.
We now introduce continuation strategies to reduce the risk
of convergence to local minima and to ensure fast conver-
gence. This approach is analogous to coarse to fine refinement
strategies that are typically used in many image processing
applications.

1) Continuation Over the Penalty Parameter : The opti-
mization problem specified by (5) has to be solved with a large
value of to ensure that the constraint in (4) is satisfied. How-
ever, it is known that the resulting algorithm will have poor con-
vergence properties when is set to be high, even when
[54]. Specifically, the shrinkage step in (6) essentially yields

when . By contrast, if a low value of
is used, computed using (6) is a heavily denoised version of

.
We adapt the continuation scheme from [49], [54], [55] to ob-

tain faster convergence. The use of continuation strategy can be
thought of as a coarse to fine refinement scheme. Specifically,
we start with a low value of , when the cost function is consid-
erably more smooth than the original one. Once the algorithm
has converged to the global minimum of this cost, we increase
; the algorithm then converges to a local minimum of the new
cost function, which is close enough to the global minimum of
the simpler cost function (with smaller value of ). Thus, this
continuation approach will encourage the convergence of the
algorithm to the global minimum, analogous to multi-resolu-
tion strategies used in nonconvex problems such as image reg-
istration. We emphasize that the reference scene is a result of
continuation over . We do not adapt approaches such as aug-
mented Lagrangian, and split-Bregman that use a fixed value of
, which may lose the property of gradual convergence, while
solving nonconvex problems.
2) Continuation Over a Deformation Force Strength Param-

eter: The motion estimation problem in (14) is itself a
nonconvex problem. Additionally when iterated along with
the reconstruction (13) and denoising (6) problems, there is
a possibility that the estimated motion parameters could get
stuck in undesirable local minima. Registration schemes often
rely on coarse to fine continuation strategies to overcome
local minima problems and to improve convergence [28],
[51], [56].
The demons implementation [51] also recommends a con-

tinuation on a force strength parameter to speed up the
convergence of the algorithm and to minimize local minima
effects. The parameter manipulates the force field such that
it is sensitive to large deformations when is small, while
larger values of makes the force field sensitive to finer
deformations [51]. Based on this, we adapt a continuation
strategy of correcting for bulk motion during the initial itera-
tions by using a small value of . As the iterations proceed,
we gradually increase , and correct for finer motion changes.
Specifically, with an initial guess of , the registration
subproblem in (14) is solved in an outer loop starting with a
small value of , and the solution in is refined by gradu-
ally incrementing towards high values; After the first outer
loop, the subproblem in (14) is initialized with the motion
estimates obtained from the previous iteration. We have ob-
served that this continuation accelerates the convergence of
the DC-CS scheme considerably. Each time the demons al-
gorithm is called, we run it for a maximum of 100 iterations
before termination.
The following pseudo code summarizes the continuation

strategies that we adapt to solve the cost in (5).
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Initialization: , , , ;

for to

for to

(6); spatio-temporal denoising/de-aliasing
of the deformed scene;

(13); CG reconstruction update with
deformation correction

if ; cost as
defined in (3);

break the inner loop;

end

end

while ; Check if the
deformation parameter update has converged;

(14); Deformation estimation;

end

; continuation over the deformation force
strength parameter;

; continuation over the penalty parameter;

end

Note that the deformation compensated images is the
denoised version of only in the first iteration because the
deformation estimate in the first iteration is zero. The defor-
mation field estimated at the first iteration is used to derive
the deformation compensated image in the second iteration;
it is obtained as the denoised version of . The itera-
tions, along with the continuation of the parameters, will
reduce the risk of the algorithm to converge to undesirable
local minima. As the iteration number increases, we have

.

IV. EXPERIMENTAL EVALUATION

To validate the proposed DC-CS scheme, we perform ret-
rospective resampling experiments based on ground truth data
from 1) the Physiologically improved nonuniform cardiac torso
(PINCAT) numerical phantom, [14], [57], 2) an in vivo fully
sampled myocardial perfusion MRI dataset with breathing mo-
tion. We compare the proposed DC-CS scheme with different
choices of compactness priors [ in (3)] against: 1) CS schemes
that use the same priors, and 2) the k-t FOCUSS with ME/MC
scheme. We show example myocardial perfusion MRI recon-
structions using radial data from two subjects imaged during
shallow breathing at stress. We finally demonstrate a scenario
of accelerating an ungated myocardial perfusion MRI dataset
that contains both cardiac and respiratory dynamics in addition
to the contrast dynamics.

A. Datasets

1) PINCAT Data: We numerically simulate the acquisition
of myocardial perfusion MRI data from a single short axis slice
of the PINCAT phantom [14], [57]. We set the phantom param-
eters to obtain realistic cardiac perfusion dynamics and contrast
variations due to bolus passage, while accounting for respira-
tion with variability in breathingmotion. The contrast variations
due to bolus passage are realistically modeled in regions of the
right ventricle (RV), left ventricle (LV), and the left ventricle
myocardium. A temporal resolution of one frame per heartbeat
is assumed. The time series data consists of 35 time frames cap-
turing the first pass passage of bolus through the different re-
gions of the heart. The spatial matrix size is 64 64, which cor-
responds to a spatial resolution of mm . For retrospective
undersampling, we simulate the acquisitions assuming golden
angle pseudo radial sampling pattern; (the angle between
successive rays was 111.25 ). The pseudo radial sampling in-
volved gridding of the radially sampled data to the nearest point
on a Cartesian grid. Subsampling was performed by considering
(30 to 8) rays/frame, respectively.
2) In Vivo Fully Sampled ECG Gated Myocardial Perfu-

sion MRI Data: We consider a single slice from a fully sam-
pled in vivo myocardial perfusion MRI scan. A healthy sub-
ject was scanned on a Siemens 3T Trio scanner at the Uni-
versity of Utah in accordance with the institutes review board.
Data was acquired using a saturation recovery FLASH sequence
( ms, saturation recovery time ms,
three slices). A Cartesian grid (phase encodes frequency en-
codes: , temporal resolution: one beat, spatial resolu-
tion: mm mm mm) and a Gadolinium bolus of
0.04 mmol/kg was used under rest conditions. The data contains
motion primarily due to breathing and inconsistent gating. We
added additional integer shifts to amplify motion (see Fig. 6).
Similar to the numerical phantom, we used the golden angle
pseudo radial sampling at different subsampling levels (30 to
12 rays/frame) for retrospective undersampling.
3) Radial Myocardial Perfusion Data Sets: Data was ac-

quired using a perfusion radial FLASH saturation recovery se-
quence ( ms, three slices per beat, flip angle
of 14 , mm pixel size, FOV: 280 mm , band-
width 1002 Hz/pixel) on a Siemens 3T Trio scanner [58] using
the Siemens cardiac coil array. 72 radial rays equally spaced
over radians and with 256 samples per ray were acquired
for a given time frame and a given slice. These rays were ac-
quired in an interleaved manner in subsets of six rays each.
The rays in successive frames were rotated by a uniform angle
of radians, which correspond to a period of four across
time. We considered two stress data sets that were acquired on
a free breathing normal subject, and a patient with suspected is-
chemia where 0.03 mmol/kg of Gd contrast agent was injected
after 3 min of adenosine infusion. A PCA-based coil compres-
sion strategy [59] was used to compress the four coil data set
to a single coil principal component data set. With this data,
we performed single coil reconstruction comparisons using 24
rays that were chosen to approximately follow the golden angle
distribution.
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4) In Vivo Fully Sampled Ungated Myocardial Perfusion
MRI Data: We consider a single slice from a fully sampled un-
gated myocardial perfusion MRI scan. We considered running
the same saturation recovery sequence ( ms,
saturation recovery time ms, one slice) on a different
subject but with no gating (phase encodes frequency en-
codes: 108 190, temporal resolution: 4 frames/beat, spatial
resolution: mm mm mm). The subject breathed
heavily during this scan. The data set was subsampled using
30 rays/frame using the pseudo-golden angle radial sampling
patterns. Note that the data contains pseudo cardiac motion on
the top of breathing motion. Note from the x-t profile in Fig. 10
(fifth column) and its temporal Fourier transform (sixth column)
that the energy is distributed at almost all frequencies, mainly
due to the modulation of pseudo-periodic cardiac motion by
respiratory motion; this limits the utility of CS schemes with
x-f sparsity. It is also challenging for the registration algorithm
to register frames in different cardiac phases to obtain smooth
x-t profiles. Specifically, the smoothness constraints on the
motion field have to considerably relaxed, which will result in a
less stable algorithm. We capitalize on the ability of the DC-CS
scheme to use Fourier sparsity penalty since pseudo-periodic
cardiac motion will still be sparse in the Fourier domain, while
keeping the smoothness constraints on the deformations to be
the same as in experiments for free breathing gated data. This
will correct for bulk respiratory motion, but have limited ability
in correcting for cardiac motion.

B. Metrics Used for Quantitative Comparison

In the retrospective undersampling experiments, we evaluate
the performance of different methods in terms of the signal-to-
error ratio (SER) metric and the high-frequency signal-to-error
(HFSER) metric. These metrics are evaluated within the field of
view that contained the regions of the heart. This was motivated
by recent findings in [60], and by our own experience in deter-
mining a quantitative metric that best describes the accuracy in
reproducing the perfusion dynamics in different regions of the
heart, and the visual quality in terms of preserving crispiness of
borders of heart, and minimizing visual artifacts due to recon-
structions. The metrics are defined below where ROI denotes a
square field of view containing regions of the heart (see Figs. 4
and 6 for the ROIs used in this paper; these were heuristically
drawn on the fully sampled dataset such that the heart always
lie within the ROI across all the frames).
Given a reconstructed data set , and a ground truth

dataset , the SER and HFSER are defined as

(15)

where is the number of time frames. The HFSER metric
which gives a measure of image sharpness is given by [61] and
[62]

(16)

where LoG is a Laplacian of Gaussian filter that capture edges.
We use the filter specified by a kernel size of 15 15 pixels,
with a standard deviation of 1.5 pixels.

C. Implementation

All the methods were run on a linux machine with an Intel
Xeon CPU processor (3.6 GHz, eight cores) and a 31.4 GB of
RAM. Both DC-CS and CS reconstructions were optimized by
tuning the corresponding regularization parameter in (3) that
gave the maximal , specified by (15). The CS recon-
structions were implemented by considering in (3). We
used the initial values of and used the same continuation
rule updates for for all the three compact priors in DC-CS.
The value of the standard deviation of the Gaussian regular-
izer in the demons algorithm was fixed to a standard deviation
of 10 pixels for all the compact priors. It is to be noted that a
larger choice of the Gaussian kernel will restrict the amount of
deformation that could be corrected, on the other hand a smaller
size of the kernel can get stuck in an undesirable local minima.
We chose the kernel size heuristically such that the bulk
breathing motion is corrected. The optimal tuned value of for
the DC-CS schemes were found to be lower than that of the CS
schemes for all the datasets. For different CS priors, the value
of was slightly higher with the nuclear norm prior than that of
the sparsity priors. For the DC-CS scheme, the tuned did not
vary much across the different priors. For the radial data, where
we did not have fully sampled truth images, we chose the reg-
ularization parameter for all the methods based on the -curve
heuristic; the choice of the regularization parameter from this
heuristic also empirically matched the reconstructions that de-
pict the best image quality.

D. Convergence Analysis

In this section, we study the convergence behavior of the
proposed DC-CS algorithm. We demonstrate the convergence
properties by considering the in vivomyocardial perfusion MRI
dataset. We consider the recovery of this data from Fourier
golden angle undersampled radial data using 16 rays/frame;
which approximately correspond to an acceleration factor of
5. We employ to be the temporal finite difference (temporal
TV) operator. We now demonstrate the role of the continuation,
and discuss the algorithm’s dependence on the initial guess of
the reconstruction.
1) Role of Continuation: As detailed in the pseudo code

above, we define continuation over the deformation force
strength parameter and the penalty parameter as a
strategy of starting with small values of and incrementing
them by small factors in an outer loop. In order to evaluate the
role of continuation, we study the below scenarios in Fig. 2(i)
with an initial guess determined by the zero filled direct Inverse
Fourier Transform (DIFFT) reconstruction; here, we study the
decrement of the cost function in (3) and the evolution of the

(15).
• Proposed strategy of continuation over both starting
with , .

• Continuation over starting with with a fixed low
value of .
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Fig. 2. Role of continuation: In (i), we study the evolution of the cost in (3) and the as a function of the CPU run time using different continuation
strategies with the zero filled direct IFFT reconstruction as the initialization. Here, we compare the proposed continuation strategy of updating against other
strategies of not performing continuation on either one of the two parameters . It can be seen that the scenarios without continuation depict poor convergence
and result in undesirable solutions [see i.(d)–(f)]. In contrast, it can be seen from i.(a)–(c) that the continuation over both depicts improved convergence and
obtains a solution in i.(c) that is free of artifacts and blur. Further in (ii), we show the cost in (3) and versus CPU run time with the proposed continuation
scheme for different initializations. It can be seen that the algorithm converged to approximately the same solution irrespective of the choice of the initialization;
the robustness to the initialization is attributed to the continuation rules which ensures a gradual update of the complexity of the problem.

• Continuation over starting with with a fixed high
value of .

• Fixed low value of with a continuation over .
A fixed high value of was not considered, as this means that
the strength of deformation forces are almost close to zero,
resulting in minimal to no motion correction. Note the initial
values of above are derived as ,
and an empirical choice of . From Fig. 2(i), we observe
that the scenarios without the use of continuation had poor
convergence properties. Specifically, the scenario of using a
high value of showed slow convergence irrespective of the
continuation over (due to many CG steps while solving the f
subproblem), while a low value of showed fast convergence
but resulted in an inaccurate solution. We also observed slow
convergence without continuation over . In contrast, we
observe that the proposed strategy of continuation over
to show both improved convergence speed and achieve the
desired solution. We refer the reader to Fig. 3 to get a sense of
the outputs of during the iterations of the DC-CS
scheme with continuation.
2) Choice of Initial Guess: In Fig. 2(ii), we study the be-

havior of the algorithm with the proposed continuation scheme
to different initial guesses of . We consider different initial
guesses obtained from the fully-sampled ground truth data, zero
filled direct IFFT reconstructed data, and a spatially regularized
total variation (TV) reconstructed data. From Fig. 2(ii), we ob-
served that that the algorithm was robust to the choice of the
initialization. The continuation ensures a gradual progression in
the complexity of the problem, thereby avoiding the chance of
getting stuck in undesirable local minima. Based on these ob-

Fig. 3. Evolution of solutions in different subproblems: In this schematic, we
show the time profiles of as they evolve during the iterations. From
the first row, it can be seen that in the initial iterations, the value of is small that
resulted in the smooth reference dataset in . This dataset is image registered
frame by frame to the reconstruction to obtain the motion estimates . Note
that and are not too similar in the first row. Specifically, since is
small, the constraint is not satisfied. As the algorithm converges, we
increment in a continuation manner, and hence the constraint in (4)
is satisfied at convergence. Also, note that during each iteration the reference

scene is obtained as the denoised version of the motion corrected dataset .

servations, we utilized the choice of the spatial total variation
(TV) reconstruction as the initial guess to the proposed DC-CS
scheme for the rest of the experiments in the paper.

E. Comparisons on the PINCAT Numerical Phantom

In Fig. 4, we show qualitative comparisons of the pro-
posed DC-CS scheme with different choices of potential
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Fig. 4. Qualitative comparison on the PINCAT phantom data using 20 rays/frame: We show for each of the scheme a spatial frame, its image time profile, and
the corresponding difference images and difference time profiles. The difference images are scaled up by a factor of 10 for better visualization. Time profile in the
second row corresponds to the profile along the dotted line in the first image frame of the top row. The location of the image frame is depicted by the arrow in
the time profile of (a). As depicted from these figures, DC-CS provides superior reconstructions compared to CS with regards to reduced motion artifacts. Motion
compensated time profiles shown in the bottom row depicts that the proposed algorithm was capable to estimate and correct most of the inter-frame motion.

functions/compactness priors against CS schemes that use
the same priors. The qualitative comparisons are shown by
considering undersampling using 20 rays/frame. We observe
that all the three priors benefit from deformation/motion cor-
rection. Specifically, classical CS methods result in temporal
stair casing (with temporal TV), motion blurring (with tem-
poral Fourier), loss in spatio-temporal fidelity, and blurring
of myocardial borders (with the nuclear norm based low rank
prior). In contrast, the proposed DC-CS methods are found to
be more robust to these artifacts. We observe similar trends
over a range of subsampling factors as depicted in the
and plots in Fig. 5.

F. Comparisons on the Fully Sampled In Vivo Myocardial
Perfusion MRI Dataset

In Fig. 6, we show the comparisons involving retrospective
sampling on the fully sampled in vivo Cartesian data. The
comparisons are shown using 16 rays per frame. Similar to the
PINCAT phantom observations, we notice superior spatio-tem-
poral fidelity and less motion artifacts with the proposed
DC-CS scheme compared to its CS variants. The and

plots in Fig. 7 also depict the same trend over a
range of subsampling factors.

Fig. 5. Quantitative comparisons of different schemes using (a) the
signal-to-error ratio, and the (b) high-frequency signal-to-error metrics
on PINCAT phantom data. These metrics are evaluated in a square field of view
that contains regions of heart as depicted in Fig. 4. These plots demonstrate that
the DC-CS schemes outperform the CS schemes at all subsampling factors.

G. Comparisons on Radial Shallow Breathing Stress Data

In Figs. 8 and 9, we show the comparisons using undersam-
pled radial stress shallow breathing data from two subjects.
We observe DC-CS to give better reconstructions in terms of
minimizing motion blur and artifacts compared to CS. These
preliminary results are demonstrated using a single coil with
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Fig. 6. Performance evaluation using retrospective sampling on Cartesian data using 16 radial rays/frame: We show two example frames, the image time profile
along the dotted line in (a), and the corresponding difference images for all the methods. Difference images are scaled up by a factor of five for better visualization.
The image time frame locations in the first two rows are depicted by the dotted lines in the time profile of (a). Compressed sensing (CS) reconstructions exhibit
considerable motion artifacts and temporal blurring (see arrows), while the proposed deformation corrected CS images (DC-CS) are robust to these compromises.
Last row depicts that the proposed algorithm was capable of estimating and correcting most of the deformation due to inter frame motion.

Fig. 7. Quantitative comparisons of different schemes using the signal-to-error
ratio (a), and high-frequency signal-to-error metrics (b) on the in vivo myocar-
dial perfusion data. Metrics are evaluated in the regions of interest containing
the heart as depicted in Fig. 6. These plots demonstrate that the DC-CS schemes
outperform the CS schemes at all subsampling factors.

24 rays, however the performance could be improved by ex-
tending to multiple coils and including spatial priors. Without
the motion compensated, the low rank prior was generally
robust to motion artifacts but sensitive to temporal blurring
during the peak contrast frames while the CS priors based on
temporal TV and temporal FFT were sensitive to motion arti-
facts. With the DC-CS scheme, we observe the reconstructions
with temporal TV and temporal Fourier to be slightly superior
to that of the low rank prior in terms of image sharpness and
reduced blurring. We however realize that the performance
of the low rank priors can be improved by considering non-
convex Schatten p-norm priors and/or patch-based low rank
priors, as shown in [14] and [16].



82 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 1, JANUARY 2015

Fig. 8. Comparison on undersampled shallow breathing radial data using 24 rays/frame. Here, single coil reconstructions are shown. For all the methods, an
example frame is shown in the top row while the time profiles along the dotted line in (b) is shown in the bottom row. It can be seen that DC-CS had fewer motion
artifacts than CS schemes (see the arrows along the myocardial borders that depict motion blur and temporal blurring in CS).

Fig. 9. Comparison of under sampled shallow breathing radial data using 24 rays/frame on a patient with suspected ischemia: Similar to Fig. 8, single coil re-
constructions are shown. It can be seen that the DC-CS schemes show better fidelity in terms of reduced motion artifacts over CS schemes (see arrows that depict
motion blurring in the CS scheme).

H. Comparisons on the Ungated Free Breathing Myocardial
Perfusion Dataset

We observe that the proposed algorithm provides less spa-
tial and temporal blurring than the CS with x-f scheme without
motion compensation, which can also be appreciated from the
x-t profiles and x-f profiles. Note from the x-f profile of the
deformation corrected dataset that the breathing motion cor-
rected dataset is more sparse in the temporal Fourier domain.
Specifically, the energy at the cardiac harmonics are increased,
while the energy at the other frequencies are decreased. We
also observe that the motion compensation attenuates the har-
monics at the respiratory motion frequency, except for the
out of plane motion that our motion compensation algorithm

cannot compensate. The superiority of image quality in DC-CS
over CS can also be seen in the and
numbers.

V. DISCUSSION

In this paper, we proposed a generalized deformation cor-
rected compressed sensing framework for dynamic MRI. The
proposed formulation is general enough to handle a wide class
of compactness priors. Example priors based on sparsity in the
temporal Fourier transform, sparsity in the temporal gradient,
low rank priors were considered in this paper. We developed a
variable splitting based optimization algorithm to decouple the
problem to multiple well understood subproblems.We observed
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Fig. 10. Performance evaluation using retrospective undersampling of ungated perfusion MRI dataset: the ungated dataset was acquired without ECG gating and
breath-holding as described in Section IV-A; A few frames of the original data, data recovered using CS with x-f sparsity penalty, and the DC-CS scheme are
shown in the first four columns. Ungated acquisition enables us to acquire diastolic and systolic frames. However, the acceleration of this dataset is challenging
due to the rapid cardiac motion (see high-frequency ripples in x-t profile) and respiratory motion (see low-frequency oscillations in x-t profile). The x-f space
representation of the ground truth data depicts the modulation of the cardiac and contrast dynamics by the breathing motion at almost all the frequencies. Proposed
DC-CS scheme corrects for the breathing motion, and exploits the sparsity of quasi-periodic dataset with cardiac and contrast dynamics (see the x-f profile of the
motion corrected dataset in the last row). Residual ripples in the x-t profile of the deformation corrected dataset correspond to out of plane breathing motion. From
the x-f, and x-t plots, it can be seen that DC-CS provides superior reconstructions over CS reconstructions [also see arrows in (b)].

that all the priors benefited from the proposed DC-CS scheme
when compared to the classical CS schemes that utilized the
same priors. In this work, we have observed that the global low
rank prior in the form of nuclear norm provided inferior recon-
structions in comparison to the temporal finite difference, and
temporal Fourier transforms. The performance of the low rank
prior can be improved by using nonconvex relaxations of the
rank, such as the Schatten p-norm [63], or by directly
solving the rankminimization problem using greedy approaches
[64]. Furthermore, the performance of the low rank prior has
shown to be considerably improved when combined with spar-
sity priors such as finite difference, and temporal Fourier trans-
form priors [65], [66].
Since the proposed framework decouples the denoising/de-

aliasing as a standalone problem, it is straightforward to con-
sider spatial regularizers such as wavelet, spatial total varia-
tion, or combine the benefits of different regularizers such as
patch-based low rank priors, or combining the low rank priors
and the temporal Fourier or the temporal TV sparse priors. Fur-
thermore, extensions to include ; norms is also possible
by utilizing efficient shrinkage rules during ; mini-
mization [54]. The reconstruction problem can also be readily
adapted to include information from multiple coils.
During the deformation estimation step (14), we utilized a

spatial smoothness constraint on the deformation field to ensure

well-posedness. In this work, since we considered regular free
breathing datasets, we used the same spatial smoothness param-
eter of while registering all the frames. The algorithm
in theory can capture sudden jumps in motion such as patient
gasps by controlling the spatial smoothness parameter at the cor-
responding frames. Furthermore, in regular breathing patterns,
the framework can be improved by constraining the deforma-
tion field to be spatially, and temporally smooth.
The algorithm was observed to be robust to the choice of ini-

tial guess. This is attributed to the continuation strategies we
adapt to update our reconstructions and deformations, and the
undersampling behavior of the radial pattern. We observed that
the spatial TV initialization provided a slight advantage in terms
of convergence speed over direct IFFT and ground truth initial-
izations, which motivated our choice of using spatial TV as an
initialization in all our experiments. In this work, we did not
evaluate the proposed method with different choices of sam-
pling patterns. For example, a 1-D Cartesian pattern could result
in overlap artifacts, whichmay not serve as a good initialization.
A natural way to get the algorithm working with such sampling
pattern is to initialize it with a basic regularized reconstruction
that is free of artifacts such as the spatial TV reconstruction used
in this work.
In this work, we do not consider to account for out of plane

motion due to simplicity. However, during free breathing, out
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of plane motion is inevitable. Most of the current acquisition
schemes in myocardial perfusion MRI are 2-D in nature; it is
difficult to compensate for out of plane motion in these cases.
Conceptually, the proposed scheme can be readily extended to
3-D, which when used with 3-D acquisition schemes can pro-
vide improved reconstructions. In addition, we also observe that
the DC-CS algorithm does not require perfect compensation of
motion. Any residual motion will only result in a more complex
image, which will be captured by the appropriate sparse/low-
rank prior.
The run time of the entire algorithm was about 25 min for

datasets of size . However, the current implemen-
tation was not optimized for speed. The main bottle neck of the
reconstruction time was the deformation algorithm, which was
implemented inMATLAB. For instance, the computational time
spent for registering a single frame is of the order of 5–6 s for
a 190 90 matrix. Perfusion datasets typically contain about
50–60 time frames. The image registration algorithm was called
for three times during the iterations. Overall, the computational
time for the registration algorithm was about 16 min for the

matrix depicted in Fig. 2. This clearly formed
the crux of the algorithm. The algorithm could be further opti-
mized by other state of the art optimized for speed deformable
registration algorithms, and also by the usage of graphical pro-
cessing units (GPUs). In this work, we employed the demons
algorithm to approximately solve (14). This approximation is a
slight limitation of our current DC-CS implementation. We will
investigate the use of registration algorithms that directly mini-
mize (14) and study the impact of the assumptions of the regis-
tration algorithm on the DC-CS framework in our future work.
In our work, we did not constrain the deformation to be invert-
ible. Future work also include posing invertibility constraints on
the deformation; this can benefit the stability of the registration
process as shown by [67].
The current radial in vivo results reported in this work were

evaluated only from two subjects. Future work of considering
datasets from multiple patients is required to fully evaluate the
clinical utility of the proposed method.

VI. CONCLUSION

We introduced a novel deformation corrected compressed
sensing algorithm for accelerated dynamic MRI. The proposed
framework has a generalized formulation capable of handling
a wide class of compactness/sparsity priors on the defor-
mation corrected dynamic signal. We developed an efficient
variable splitting based optimization framework to decouple
the complex joint reconstruction and deformation estimation
problem to simpler problems of shrinkage-based denoising,
deformable registration, and quadratic optimization. The ef-
ficient decoupling of the subproblems makes the proposed
scheme applicable to a wide range of dynamic MRI applica-
tions including dynamic contrast enhanced MRI applications.
Efficient continuation strategies were devised to cycle between
the subproblems. We demonstrated that the proposed algorithm
with continuation was robust to choice of initialization. Our
experiments on a numerical phantom and, in vivo myocardial
perfusion MRI datasets demonstrated that the proposed scheme

was able to reduce motion artifacts and temporal blurring that
were present in compressed sensing reconstructions.
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