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Dynamic magnetic resonance imaging (MRI) can be used to 
scan a wide range of dynamic processes within the body, 
including the motion of internal organs, tissue-level nuclear 

magnetic resonance (NMR) relaxation, and dynamic contrast 
enhancement (DCE) of dye agents. The ability of MRI to safely 
provide unique soft-tissue contrast and comprehensive function-
al information has made dynamic MRI central to a number of 
imaging exams for cardiac, interventional, vocal tract, cancer, 
and gastrointestinal applications, among others. Unfortunately, 
MRI is a notoriously slow imaging modality due to fundamental 
physical and physiological limitations. These limitations result 
in tradeoffs between spatial and temporal resolutions, spatial 
coverage, and the signal-to-noise ratio and have made dynamic 
MRI a challenging technical goal.

During the past decade there was a surge of several com-
pressed sensing (CS) MRI approaches (for example, [1] and [2]) 
that have made substantial headway toward addressing this 
challenge. At its core, CS-MRI exploits the redundancy of the 
images in predetermined transform domains (for example, 
Fourier and wavelet). However, one drawback has been that 
fixed transforms often do not provide the most efficient repre-
sentation of images, thereby limiting the maximum achievable 
acceleration. To address these shortcomings, several adaptive, 
learning-based methods have been proposed. These schemes 
have revolutionized dynamic MRI for many applications, 
offering exciting new capabilities in biomedical imaging.

Here we offer a unified view of several different approaches 
to dynamic imaging using learned representations, focusing on 
the signal processing aspects that make each class of learn-
ing methods so powerful. Included are low-rank (LR) [3]–
[5], blind CS (BCS) [6], higher-order multidynamic [7]–[10], 
explicit motion estimation and compensated recovery [11],  
[12], and manifold-regularized recovery methods [13], [14] as 
well as deep-learning approaches [15]–[17].

Problem formulation
We consider a complex image, ( , ( ), ( ), , ( )),x t t tr L1 2 fx x xu  
that is a scalar function of spatial location, [ , , ] ,x y zr T=  and 
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L 1$  time-varying independent variables, { ( )} ,t L
1x, ,=  each 

representing a different physical or physiological dynamic pro-
cess, such as motion and NMR relaxation or simply the pas-
sage of time, t. The dynamic MR signal from this image can be 
observed from noisy, spatially encoded discrete measurements 
in ( , )tk  space:

, , , ,expb t x t s t j d tk r r k r r kc m n n c n m
T

c m n
r

h= - +^ ^ ^ ^ ^h h h h h# �
� (1)
	 , , , , , ,x t x t t tr r L1 2 fx x x= u ^ ^ ^^ ^ h h hh h � (2)

where ( , )s trc n  denotes the coil-sensitivity profile of the cth  
channel (which may vary with time), ( , )tkm n  indicates the 
( , ) thm n  sampling location in ( , )tk  space, and h  denotes ad-
ditive complex-valued Gaussian noise. Specific dynamic pro-
cesses can be targeted by holding the unwanted x’s constant 
during signal acquisition. For example, the th,  dynamic pro-
cess can be isolated by enforcing ( )t qq q6 ,!x l=  during ac-
quisition for some set of constant values, { } .q ql ,!  Practically 
speaking, this means either physically holding { ( )}tq qx ,!  
constant (for instance, pausing respiratory motion by having 
patients hold their breath) or waiting to acquire data only when 
the condition ( )t qq q6 ,!x l=  is met [such as removing the 
appearance of cardiac motion by synchronizing the data ac-
quisition to a monitored electrocardiogram (ECG) signal]. The 
decision of which dynamic processes to image and which to 
suppress is application dependent.

The expression in (1) can be more compactly written in 
matrix-vector form as ( ) ,b XA h= +  where the matrix X  
has elements [ ] ( , ),x tX rmn m n=  and the linear operator A  
models the coil-sensitivity encoding as well as the Fourier 
encoding on an arbitrary sampling trajectory (for exam-
ple, Cartesian or non-Cartesian). The goal of accelerated 
dynamic MR image reconstruction is typically to recover 

( , )x tr  from undersampled ( , )tk -space measurements 
through the use of low-dimensional learned representations 
of the underlying image. The recovery of ( , , , , )x r L1 2 fx x xu  
is also possible and is discussed in the “Multidynamic Mod-
els” section.

Spatiotemporal decomposition models
The general partial separability (PS) model proposed by Liang 
[3] can be used to interpret several fixed and learned spatio-
temporal decomposition models in a unified manner. The PS 
model utilizes a global signal model to represent the signal-
time profile at each voxel, ( ( , )),x tr  as

	 , , .x t x t u v tr r ri
i

R

i
i

R

i
1 1

= =
= =

^ ^ ^^ h h hh / / � (3)

The decomposition implies that ( , )x tri  is separable as 
functions of r  and t; that is, it can be factored as a product 
of the spatial model coefficients ( )u ri  and the temporal basis 
functions ( ).v ti  Here, R denotes the total number of basis func-
tions (or the model order). Equation (3) implies that ( , )x tr  can 
be efficiently represented in either of two low-dimensional fea-
ture spaces, ({ ( )} )uspan ri i

R
1=  and ({ ( )} ),v tspan i i

R
1=  providing 

an avenue for representation learning to recover ( , )x tr  from 
undersampled measurements.

Both ({ ( )} )uspan ri i
R

1=  and ({ ( )} )v tspan i i
R

1=  are R-dimen-
sional linear subspaces (that is, linear manifolds intersecting 
the origin), so we adopt a linear algebraic framework to under-
stand (3). In matrix form, (3) states that the dynamic Casorati 
matrix X CM N! #  can be decomposed as a product of a spatial 
coefficient matrix, ,U CM R! #  and a matrix, ,V CR N! #  con-
taining temporal functions:
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Here, M represents the total number of voxels, and N denotes 
the number of time frames. Based on the constraints imposed 
on the matrices, U  and ,V  and the model order, R, the general 
PS model in (4) can help to classify various models, as laid out 
in Figure 1.

Linear models with complex exponential bases
The earliest adaptive model in dynamic MRI, known as dy-
namic imaging by model estimation (DIME), was proposed by 
Liang et al. [18]. It focuses on the recovery of a quasi-periodic 
dynamic signal as a linear combination of a limited number of 
complex exponential temporal basis functions. Therefore, the 
generalized PS model in (3) and (4) reduces to

	 ( , ) ( ) ; .x t u e R Nr ri
i

R
j f t

1

2 i 1= r

=

/ � (5)

The frequencies { }fi i
R

1=  can be obtained from training data 
during the scan, which are typically composed of low spatial 
but high temporal-resolution dynamic data. In a second step, 
the coefficients { ( )}u ri i

R
1=  or U  are determined by the method 

of least-squares-fitting to the acquired k-t data ( )b  as

	 ; .argmin V eU UV bA j f t
2
2 2

in
U

i n= =- rt ^ h � (6)

In addition, to improve the conditioning of (6), it is common 
to include l2  regularization on .U  The idea was extended by 
several researchers who reformulated the problem as a spa-
tial-spectral filtering issue; the goal was to design k-t lattice-
sampling patterns to minimize the coherent aliasing in the 
spatial-spectral space (such as in [19]). These schemes were 
particularly developed to model quasi-periodic temporal pat-
terns as observed with cardiac cine MRI and task-based func-
tional MRI.
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CS
CS under the synthesis-basis representation can be interpreted 
by the generalized PS model as having sparse coefficients, ,U  
of a fixed temporal basis, ,V  with ,R N$  where V  is deter-
mined a priori. The temporal basis { ( )}v ti i

R
1=  belongs to an 

overcomplete dictionary that is chosen either off the shelf (such 
as wavelets and complex exponential bases) or learned from a 
physical model describing the evolution of the time series (for 
instance, via dictionary learning [20]). CS assumes the model 
coefficients ( )u ri  to be sparse and estimates them from the 
measured ( , )tk -space data via the following minimization:

	
;

   .

argmin

R N

vec

for predetermined and

U UV b U

V

A 2
2

1
U

$

m= - +t ^ ^h h
�

(7)

An alternative to (7) is to use an analysis formulation [1],

	 ,argminX X b XA 2
2

1
X

m }= - +t ^ ^h h � (8)

where } is an appropriate sparsity-inducing operator. Note 
that (7) and (8) produce the same reconstruction when 

( ) .X XV 1} = -  CS eliminates the need for training scans and, 

instead, relies on incoherent sampling. The performance of CS 
is heavily dependent on the specific dictionary or sparsifying 
operator. For example, Fourier dictionaries may be ideally 
suited for breath-held cine applications due to the pseudo-pe-
riodicity of cardiac motion. However, for applications involv-
ing complex temporal dynamics (such as free-breathing and 
contrast-enhanced MRI), the use of Fourier dictionaries may 
be suboptimal (as demonstrated in [5]).

Blind linear or LR models
Blind linear models can be thought of as a generalization of 
adaptive dynamic imaging by model estimation to nonperiodic 
dynamic data sets; instead of assuming the temporal basis func-
tions in V  to be periodic exponentials, they are derived from 
data, such as principal component analysis (PCA), singular 
value decomposition (SVD), Karhunen–Loève theorem (KLT), 
and others. These models are LR because they capitalize the 
position redundancy of the Casorati matrix, .X  Several mod-
els (including k-t PCA [4], a variant of PS [3]) utilize a two-
step strategy to reconstruct ( , ).x tr  The temporal bases ( )v ti  
are estimated from low spatial-resolution but high temporal-
resolution data. Subsequently, the spatial coefficients ( )u ri  are 
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FIGURE 1. The generalized PS model provides a unified view of various spatiotemporal decomposition models. (a) The models based on choices of con-
straints on the spatial coefficient matrix, ,U  the temporal matrix, ,V  and the model order, R. (b) An example pictorial decomposition of U and V  for the 
BCS model on a myocardial perfusion data set.
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estimated by fitting the model in (3) to the acquired k-t data in a 
least-squares sense that is similar to (6).

One limitation of the two-step strategy is that it requires 
sufficient training data to reliably approximate the true PCA/
SVD/KLT basis functions. It demands a tradeoff between the 
time spent to collect the training data and the undersampled 
high-spatial-frequency measurements. To address this, single-
step recovery schemes have been proposed that jointly estimate 
the spatial weights and temporal bases from the undersampled 
data itself [5]. The reconstruction problem can be reformulated 
as a rank-constrained optimization:

	
.

argmin

R Nsuch that rank

X X b

X

A 2
2

X

1#

= -t ^
^
h
h

�
(9)

Several researchers have proposed alternate regularizers as a 
surrogate to the rank, including the convex nuclear norm ( )p 1=  
and the nonconvex Schatten p norm ( ).p 11  In addition, meth-
ods that jointly exploit the low rank and transform sparsity of 
dynamic time series have been developed. For example, the 
method of k-t sparsity and low rank (a joint exploitation of the 
finite difference sparsity and low rank) can be formulated [5] as

	
.

argminX X b X

X X X

A p
p

x y t

2
2

1

2
2 2 2

1

Schatten  norm

spatiotemporal total variation

X
p

d d d

m

m

= - +

+ + +

t ^

^ ^ ^

h

h h h
1 2 34444444444 4444444444

;
�

(10)

The two-step recovery scheme of the blind linear model has 
also been improved by utilizing additional sparsity constraints 
[21]. These improve the recovery of the ( )u ri  problem for (3) as

,argminU UVU V bA
2

2
1

sparsity regularizerfrom PCA/KLT/SVD
U

m }= +-t ^c hm 1 2 344 445
� (11)

where the choice of } in (11) is motivated by the diffusion-
MRI application. It is worth noting that, since V  is explicitly 
estimated in the two-step recovery scheme, it has the advan-
tage of using less memory to store U  and V  as opposed to 
storing the entire X  matrix, which is a key contributing factor 
when translated to the multidynamic setting, as we discuss in 
the “Multidynamic Models” section.

The BCS model
The BCS model [6] shares similarities with the CS and blind lin-
ear models. Similar to CS, the voxel-intensity profiles are mod-
eled as a sparse linear combination of the basis functions in a 
dictionary. However, instead of assuming a fixed dictionary, ,V  
BCS estimates the dictionary from the undersampled measure-
ments themselves. BCS differs from blind linear models by 
assuming the sparsity of the coefficients, ,U  and using R N$  
temporal basis functions, which are not necessarily orthogonal.

BCS reconstruction involves the joint estimation of ( )u ri  
and ( )v ti  in (3) from undersampled k-t measurements, ( ),b  
with a sparsity constraint on ( )u ri  and a dictionary constraint 

on ( ),v ti  which is required to avoid scale ambiguity in the 
product of ( ) ( ).u v tri i  The choices for the sparsity and diction-
ary constraints can range from the convex l1  norm or the non-
convex ,l0  ;l p  ( )p0 11 1  norms on ( )u ri  to the unit-column 
and Frobenius norm constraints in the dictionary. An example 
BCS reconstruction with the l1  coefficient sparsity and unit-
column-norm dictionary constraint can be formulated as the 
following constrained optimization problem:
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It is worth noting that various other formulations of the BCS 
scheme have been proposed that cannot be described by the 
generalized PS model. For instance, [22] considers overlapping 
patches of X  in the r  and t dimensions and exploits the spar-
sity in a learned spatiotemporal overcomplete dictionary from 
the patches. Convolutional sparse coding assumes X  to be a 
superposition of the sparse feature images convolved with a 
collection of filters, where both the feature images and filters 
are acquired from the undersampled data [23].

Multidynamic models
An alternative to imaging ( , )x tr  is to perform multidynamic 
imaging [7]–[10] (Figure 2), which preserves the multiple inde-
pendent variables { } L

1x, ,=  and applies multidimensional signal 
modeling to image the underlying ( , , , , ).x r L1 2 fx x xu  This im-
age, ,xu  is said to have L time dimensions.

The multidynamic imaging of ( , , , , )x r L1 2 fx x xu  has sev-
eral benefits over imaging ( , ).x tr  First, it is no longer nec-
essary to enforce ( )t qq q6 ,!x l=  during acquisition to 
isolate a single :x,  The desired dynamic image can simply 
be retroactively extracted as a temporal slice of ,xu  that is, 

( , , , , , , ).x r L1 2 f fl l x l,u  Second, if multiple s\x  are of interest 
they can be imaged without collapsing them into a single time 
dimension, t, where they would otherwise confound each other 
during analysis. This allows multipurpose imaging, such as 
cine imaging and T1  mapping, in the same scan and multipa-
rameter mapping (for example, T T–1 2  mapping). Finally, there 
are additional benefits to the image analysis: When multiple 
processes are quantified from the same scan, there is no need 
for image registration. This is especially relevant to the image 
fusion of the parameter maps acquired in separate breath-holds 
since patients typically do not reproduce their exact respiratory 
position during successive scans (Figure 3).

Imaging the entire ( , , , , )x r L1 2 fx x xu  presents its own 
challenges, of course. These primarily stem from the curse 
of dimensionality, wherein the size of xu  grows geometrically 
with the number of dimensions. Let { }rm m

M
1=  be the set of 

M voxels in the image and { },n n
N

1x, =, ,

,  be a set of N,  dis-
crete values along the th,  time dimension, .x,  The number 
of elements in ( , , , , )x r L1 2 fx x xu  is, therefore, ,M NL

1P, ,=  
revealing geometric growth as L increases. As the number 
of elements in xu  rises, so do the sampling (for instance, the 
scan time) and memory/storage requirements, presenting 
major practical challenges.
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Fortunately, this challenge is balanced by the blessing of 
dimensionality, wherein the signals in high-dimensional spac-
es are often highly structured and can be very efficiently repre-
sented with the appropriate signal modeling [24]. This provides 
an opportunity for the multidimensional extensions in (3) to 
represent xu  with fewer degrees of freedom than ,M NL

1P, ,=  
thereby reducing the scan time and/or storage requirements. 
By explicitly separating the sources of the image dynam-
ics into multiple time dimensions, each dynamic in xu  can be 
afforded its own temporal model.

To interpret various models in a unified manner, we revisit 
(3) in the context of multidynamic imaging:

	 , , , , , , , ,x u vr rL i
i

R

i L1 2
1

1 2f fx x x x x x=
=

u u^ ^^ h hh / � (13)

which simply replaces the { ( )}v ti i
R

1=  with the multidimen-
sional functions { ( , , , )} .vi L i

R
1 2 1fx x x =u  We notate xu  in mul-

tidimensional array/tensor form [25] as the ( )L 1+ -way tensor 

CX M N N NL1 2! # # # #f  with elements [ ] ( , ,x rX ,mn n n m n1L1 2 1x=f u  
, , )., ,n L n2 L2 fx x  In this form, (13) becomes

	 ,UX V 1#= � (14)

where CV R N NL1! # # #g  has the elements [ ]V n nin L1 2 =f  
( , , , )v , , ,i n n L n1 2 L1 2 fx x xu  and the definition of U  is unchanged 

from (4). As before, the constraints imposed on U  and V  
and the value of R help to classify various multidynamic-
image models.

Multidimensional CS
Multidimensional CS for multidynamic imaging was first 
described by Feng et al. as the extra-dimensional golden 
angle radial sparsity reconstruction (XD-GRASP) method 
[7], which demonstrated cardiac- and respiratory-resolved 
imaging of the heart as well as respiratory- and DCE-re-
solved abdominal imaging. Cheng et al. expanded upon the 
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FIGURE 2. An illustration of the multidynamic imaging concept. Four dynamic processes occur during the scan: T1  relaxation (a function of inversion 
time), T2  relaxation (a function of T2  preparation-module duration), cardiac motion, and respiratory motion. (a) All four processes overlap in the real-time 
dynamic image ( , )x tr , complicating the analysis of any individual dynamic process. (b) Multidynamic imaging separates the processes into different 
dimensions of ( , , , , ).x r 1 2 3 4x x x xu
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FIGURE 3. Some of the capabilities of multidynamic imaging, as performed using MR multitasking [10]. (a) The multidynamic image ( , , , , )x r 1 2 3 4x x x xu  
can be sliced along any of its four time dimensions to retrospectively isolate individual dynamic processes. Note that, by performing cardiac- and 
respiratory-resolved imaging, the example here did not require ECG gating or subject breath-holding. (b) Because relaxation processes T1  and T2  
are imaged in the same motion-resolved scan, T1  and T2  maps are naturally coregistered and available in any combination of the cardiac phase and 
respiratory position.
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concept with the XD flow method [9] by 
calculating multiple reconstructions with 
different combinations of cardiac, respira-
tory, flow, and DCE time dimensions from 
one scan.

This class of methods is characterized 
by a large predetermined basis V  and 
sparse .U  The advantage of this model 
over its single-dynamic counterpart is 
that xu  is potentially more compressible 
along an individual time dimension ,x,  
than along t. For example, we can reasonably expect the dif-
ference image along ,x,
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to be sparser than the difference between successive real-
time images,
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this is because (15) describes the change from one dynamic 
effect, whereas (16) describes simultaneous changes from 
multiple dynamics. Image reconstruction is then possible 
according to

	 ,argmin vecb XA XX ( )i
i

L

i i2
2

2

1

1
X

m W= - +
=

+
t ^ ^h h/ � (17)

where X( )i  is the ith unfolding of X  such that the rows of 
X C( )

M N
1

L
1! #P, ,=  index ,r  the rows of X C( )i

N M Ni i1 1! # P, ,!- -  
index i 1x -  for ,i 12  and the sparsifying transform iW  oper-
ate along i 1x - . This recovers an image tensor, ,X  which is 
compressible, thereby reducing the scan time; however, algo-
rithms to solve (17) generally do not explicitly store and oper-
ate upon X  in compressed form, so the memory issues related 
to the curse of dimensionality remain.

An important consideration in multidynamic sampling is that 
{ ( )}t L

1x, ,=  must be known to establish the mapping between t 
and ( , , , ).L1 2 fx x x  Any ( )tx,  that describes a sequence param-
eter is known a priori since it is a part of the pulse-sequence 
design. However, any ( )tx,  that is a physiological index, such 
as the cardiac phase (that is, the time point in the cardiac cycle) 
and respiratory position, cannot be known ahead of time. These 
physiological timings need to be monitored using ECG record-
ings and respiratory navigators or, alternatively, inferred from 
the acquired data (that is, “self-gated”). One of the primary 
benefits of multidynamic imaging is freedom from motion 
monitoring, so both the XD-GRASP and XD flow are self-gat-
ed methods, for which the physiological ( )t sx,  are calculated 
from a subset of b that is referred to as the self-gating signal. 
Self-gating signals are collected throughout the scan at a high 
temporal-sampling rate from a limited subset of the -k space, 
which is similar to the subject-specific training data to learn 
V  that are used by some of the methods described in the pre-

vious section. For multidimensional CS, the 
self-gating signals serve only to define any 
unknown timings, { ( )} ,t L

1x, ,=  and have no 
bearing on .V

LR tensor imaging
As in conventional single-dynamic imaging, 
a complementary alternative to CS that fea-
tures learned representations is blind linear 
modeling, or in the context of multidynamic 
imaging, LR tensor (LRT) imaging. He et al. 

described the LRT with explicit subspace (LRTES) method [8] 
for multishell diffusion imaging, static T T-1 2

)  mapping, and 2D 
J-resolved spectroscopic imaging. The MR multitasking frame-
work [10] extended the concept to handle motion-resolved im-
aging; performing motion-resolved quantitative imaging, such 
as non-ECG; free-breathing T T–1 2  mapping in the heart, and 
cardiac- and DCE-resolved T1  mapping for quantitative myo-
cardial perfusion.

LRT imaging is characterized by learning a V  for which 
( , )minR M NL

11 P, ,=  and where U  is not necessarily sparse. 
Compared to LR imaging with one time dimension, the LRT 
model places additional constraints on the structure of the 
temporal basis, specifically that the V  itself can be factored, 
that is, that each ( , , , )vi L1 2 fx x xu  can be further decomposed. 
Various tensor decompositions are available to model ,V  for 
example, the canonical decomposition,

	 ( , , , ) ( ) ( ) ( ),v v v v, , ,i L i i N i L1 2 1 1 2 2f fx x x x x x=u � (18)

where { ( )}v ,i i
R

1x, , =  spans the subspace for the th,  time dimen-
sion, and the Tucker decomposition,
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where { ( )}v ,i i
R

1x, , =, ,

,  is the basis for the th,  time dimen-
sion. The core tensor, ,CC R R RL1! # # #g  has the elements 
[ ] ,cC ii i i ii i iL L1 2 1 2=f f  which determine the weight assigned to 
each basis function, which is similar to the role of the singular 
values in matrix decompositions. We also note the option of lo-
cal [26] and patch-based tensor modeling [27], [28], which may 
have benefits related to nonlinear manifold modeling (which 
is discussed further in the “Manifold Models” section.). For 
a comprehensive description of the differences between vari-
ous tensor decompositions, see [25]. The rest of this section 
assumes global modeling using (19), which permits a lower R 
than the canonical decomposition and is employed by LRTES 
and MR multitasking. In the global Tucker tensor form, the 
temporal model in (14) and (19) becomes
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where the elements of V CN R! #
,

, ,  are [ ] ( ).vV , ,ij j ix=, , ,
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There are various approaches to learning an LRT represen-
tation from sparsely sampled data. One approach is to implic-
itly impose the LRT model by penalizing the nuclear norm of 
each unfolding of ,X  that is,

	 .argmin b XA XX ( )i
i

L

2
2

1

1

X
m= - + )
=

+
t ^ h / � (20)

Similar to (17), this addresses the scan time by recovering an 
image tensor, ,X  that is compressible (this time by tensor fac-
torization) without explicitly storing X  in a factorized form. 
To directly address the effect of curse of dimensionality on 
the memory and storage requirements, it is instead possible 
to recover the memory-efficient individual factors of the LRT 
model, ,U  ,C  and { } ,V L

1, ,=  without calculating their product, 
,X  in the sense of
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Rather than jointly optimizing the cost function in (21) across 
all of the variables, it is often convenient to first learn the repre-
sentations for the dynamic processes from subject-specific train-
ing data, as in the LRTES method. This method applies when 
( , , , , )k L1 2 fx x x -space sampling can be prospectively con-
trolled (for instance, when all of the { ( )}t L

1x, ,=  represents the 
sequence parameters). In this scenario, the sampling is designed 
to collect L subsets of training data, the th,   set of which densely 
samples across x,  within a limited region of ( , { } )k q qx ,! -space. 
Each V,  is then learned by computing the SVD of each training-
data subset before jointly recovering C  and U from the remain-
ing ( , , , , )k L1 2 fx x x -space information.

MR multitasking offers a solution to scenarios where 
the ( , , , , )k L1 2 fx x x -space sampling cannot be fully con-
trolled (for example, when some of the { ( )}t L

1x, ,=  indexes 
physiological processes, such as motion). There, self-gating 
data are used to learn { ( )}t L

1x, ,=  before they are mapped 
into the ( , , , , )k L1 2 fx x x -space to serve as subject-specif-
ic training data. The training data typically only sparsely 
sample the ( , , , , )k L1 2 fx x x -space, so multitasking performs 
the temporal-feature extraction by learning V  from all of 
the training data after they have been completed using 
nuclear-norm constraints, similar to (20). Because the 
training data are collected only in a limited region of the 
k-space, their completion problem has far more modest 
memory and storage requirements than the entire-image 
completion problem in (20). After learning the feature-space 

({ ( , , , )} ),v fx x xspan i L i
R

1 2 1=u  the image coordinates in that 
area (such as the )U  are recovered identically to the sub-
space-constrained LR matrix-image reconstruction problem, 
with ( ) ( ( ), ( ), , ( )).v t v t t ti i L1 2 fx x x= u

Explicit motion estimation  
and compensation models
Several methods based on compensating the interframe object 
and/or subject motion have been proposed to improve the per-

formance of accelerated dynamic MRI models. The general 
idea is to jointly estimate the deformation parameters and dy-
namic data set by imposing compactness priors on the motion-
corrected time series rather than the original time series. An 
example optimization criterion for an explicit motion estima-
tion and compensated dynamic MRI recovery scheme can be 
written as [11], [12]:
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where, Ti  denotes the deformation operator, described by the 
motion-field parameters, ( , ).tri  The motion field can be mod-
eled as a rigid-body movement and nonrigid deformations, and 
z is a regularizer on the motion field, such as a smooth spatial 
filter to penalize large, unrealistic deformations. Meanwhile, 
} specifies the arbitrary choices for the compactness priors 
in the motion-compensated time series, including the spatial-
spectral sparsity prior, spatiotemporal finite-difference spar-
sity prior, and patch-based and/or global LR priors.

The optimization in (22) is challenging to solve due its 
nonlinearity and nonconvexity. The typical approaches 
include alternating between reconstruction and motion esti-
mation by starting with reasonably good initial estimates of 
the reconstruction and the motion maps. In practice, strategies 
that correct for motion in a coarse-to-fine stage have shown 
to be robust against undesirable local minima. In a similar 
realm, other efficient methods based on variable splitting and 
continuation rules have been proposed to decouple the prob-
lem in ( )22  to simpler challenges and gradually update the 
complexity. Figure 4 presents an example of a motion-com-
pensated reconstruction scheme that is applied to the recovery 
of free-breathing cardiac-perfusion data sets from fourfold 
undersampled data. While the explicit motion estimation and 
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FIGURE 4. The demonstration of explicit motion estimation and the com-
pensation models. This example displays fourfold-prospectively acquired 
myocardial perfusion data with heavy breathing. (a) Performing CS (via 
a patch-based low-rank regularizer) shows considerable motion artifacts. 
(b) With motion compensation, the reconstruction is robust against those 
artifacts and demonstrates an improved temporal fidelity. (Source: Xiao 
Chen, Siemens Healthineers; used with permission.)



90 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2020   |

compensation are extremely powerful in reducing motion 
artifacts, they are practically challenged by long computation 
times, nonconvexity, and the tuning of several parameters (for 
instance, the reconstruction and motion-estimation regular-
ization parameters).

Manifold models
The manifold structure of data has been widely used to visual-
ize the configuration of complex sets. Nonlinear dimensional-
ity reduction and manifold-embedding methods assume that 
the data are points on a low-dimensional manifold (a smooth 
surface) in a higher-dimensional space. If the manifold is of 
low enough dimensionality, the data can be compactly visu-
alized in low-dimensional space. For example, if the points 
are on a curve in 3D, each one can be associated on a straight 
line; nonlinear dimensionality reduction methods, including 
isometric mapping generate a nonlinear mapping between 
each point on the 3D curve to a point on a line [29]. Emerg-
ing research shows that the manifold structure can be used to 
regularize the recovery of dynamic MRI data from unders-
ampled measurements.

In applications such as free breathing and ungated cine 
MRI, the dynamic images can be associated with the nonlin-
ear functions of two parameters: the cardiac and respiratory 
phases. Images with similar cardiac and respiratory phases 
are expected to be comparable; this property is used in gat-
ing methods. Hence, the images can be assumed to be points 
on a smooth low-dimensional manifold with a high ambient 
dimension, where the dimension is the total number of pixels 
in each image. Figure 5 demonstrates this concept on a simu-
lated free-breathing cardiac cine phantom, where similar but 
distant time frames are mapped to lie in close proximity on the 
smooth manifold.

Manifold regularization exploits the similarity of image 
frames in terms of the proximity of the points on the smooth 
manifold. The reconstruction formulation can be written [13] as

,argmin WX X b x xA ij i j p
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where the matrix W RN N! #  contains weighting factors that 
determine the degree of similarity between xi  and x j  and the 
ith and jth columns (time frames) of ,X  p

p$< <  indicates the l p  
norm, and p 21=  indicates the image differences. These 
weights are inversely proportional to the distance between the 
corresponding points on the manifold. For pairs of points that 
are closer to each other, Wij  has a high value, while for pairs 
of points that are farther from each other, Wij  has a low value. 
One strategy to estimate these weights is use the navigator sig-
nals ( , )y tk  as
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where v  is a parameter that is dependent on the maximum cur-
vature on the manifold. The acquisition scheme to collect the 
navigator data ( , )y tk  requires sampling of the k-space at the 
same location for each time frame. Typically, the navigator data 
are simultaneously interspersed with the measurement data. For 
example, in free-breathing cardiac cine MRI [13], three to four 
radial spokes are acquired as navigator -spacek  lines for each 
frame, while the remaining spokes are obtained by using a clas-
sical golden-angle radial scheme. This can be extended using 
other navigator-sampling methods (such as with spirals).

Other manifold regularizations have been proposed. As 
an example, in localized linear embedding [30], each image 

Image frames that are
similar but distant in time

are neighbors on the manifold.

Image Time Series

w = 1

w–0

FIGURE 5. The manifold structure of dynamic images. In this example, a free-breathing, ungated cardiac cine phantom is considered for demonstration. 
The image frames can be considered to live as points on a smooth 2D manifold in a higher-dimensional space. Note that, in the sequence of images on 
the right, there are frames that are similar but distant in time (that is, of the similar cardiac and respiratory phase; see the red and yellow squares). On 
the manifold, the frames are mapped to points that are neighbors. Similarly, dissimilar frames correspond to points that are far away from each other 
on the manifold. The weighting factors that determine the degree of similarity between two frames are typically estimated via navigator signals, and the 
reconstruction is formulated as a penalized optimization [22].
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(that is, a point on a manifold) is closely approximated by the 
weighted combination of the other images in the data set (that 
is, neighbors on the manifold). The weights are estimated from 
navigator data similar to smoothness regularization on mani-
folds (SToRM).

Based on the success of nonlocal means in denoising [31], 
patch-based regularization for implicit motion-compensated 
recovery has been proposed in dynamic MRI recovery [32]. 
Small spatial patches are defined in an 
image frame, and similar patches are located 
in a localized spatiotemporal neighborhood 
in subsequent time frames. Redundancies 
among the similar patches are then exploited. 
The recovery can be posed as a regularized 
reconstruction scheme, where the nonlocal 
regularization penalty is an unweighted sum 
of distances between image-patch pairs in 
the dynamic data set.

Kernel-based PCA approaches have been proposed that also 
fall under the umbrella of the manifold-regularization methods 
[14]. Kernel PCA maps the low-dimensional dynamic signal to 
a high-dimensional feature space via a nonlinear mapping. It 
exploits the LR structure in the high-dimensional feature space 
and maps the reconstruction from the feature space to the sig-
nal space. Recently, SToRM has been interpreted as a kernel 
PCA approach by exploiting a union-of-curves model [33].

Deep-learning models
Deep learning via multiple layers of hierarchical nonlinear 
representation modules (for example, neural networks) is a 
hugely active research area in many fields of science and 
engineering today. Deep-learning networks are capable of 
solving complex inverse problems noniteratively (or rather, 
with all of the iterations isolated to an initial training phase); 
as such, they offer an avenue for nonlinear image reconstruc-
tion at unprecedented calculation speeds. Neural networks 
are known to be highly effective at learning representations 
of data that lie on nonlinear manifolds [34], further mak-
ing deep learning a promising fit for dynamic-image recon-
struction. As covered elsewhere in this issue of IEEE Signal 
Processing Magazine, most deep-learning MR image-re-
construction networks have been designed to recover static 
images or individual frames from dynamic images (see [35]–
[37]), thereby learning spatial representations. However, ex-
plicitly dynamic methods for learning spatiotemporal repre-
sentations have started to appear in the literature as well, (as 
in [15]–[17]), presenting an exciting new avenue for acceler-
ated dynamic MRI.

Rather than iteratively inverting the forward problem 
( )X bA =  to reconstruct Xt  for each individual subject, deep-

learning reconstruction methods learn the parameters it  of 
a nonlinear forward-reconstruction operator, (·; ),f it  from a 
large training set. This training set, ,Dtrain  contains matched 
pairs of known ground-truth images and their undersampled 

-spacek  data, ( , ),X b  from multiple subjects, enabling the net-
work to be trained according to the objective function

	 , ; ,argmin fX bL
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where the loss function ( , ( ; ))fX bL i i i  compares the ith re-
constructed image ( ; )f bi i  to the corresponding labeled train-
ing image .Xi  In the context of dynamic MR image recon-
struction, L2 has been the main loss function to be explored:  

( ; ) .argmin fX b( , )i i i 2
2

X b Di i traini iR= -!i
t  It should be noted 

that in practice, b is optionally transformed 
into image space by an initial preprocessing 
step, such as the adjoint operation ( ),bA*  
before passing through the network. Here 
we absorb preprocessing steps into f as a 
means of simplifying the notation.

After they are trained by (25), future 
images can be reconstructed by a single pass 
through the deployed network, ( ; ),fX b i=t t  
or by performing data-consistent recon-

struction that incorporates ( ; )f b it  as a prior on Xt  [15], [38], 
as in

	 ; .argmin fX X b X bA F2
2 2

X
m i= - + -t t^ ^h h � (26)

A two-step process of 1) applying f to remove noise and 
artifacts and 2) enforcing the data consistency via (26) mir-
rors individual iterations of the optimization algorithms used 
for iterative nonlinear image reconstruction. As a result, deep-
learning reconstruction pipelines that repeat this two-step 
process multiple times in series are analogous to “unrolling” 
iterative algorithms.

Deep-learning networks for imaging are generally struc-
tured so that early layers of f encode the input within the non-
linear feature space that was learned during training, and later 
layers decode the desired .Xt  In the context of dynamic MRI, 
this can be understood as replacing handcrafted model choices 
(for example, whether U  is sparse, what the size of V  is, and 
whether to perform local or global modeling) with automatic 
modeling to some degree. These choices do not entirely disap-
pear since they are reflected in the selection of the specific 
network architecture; as an example, the hierarchy of layers is 
usually designed to permit multiscale modeling, but the spe-
cific it  learned during training would ultimately determine 
the balance between global and local modeling. Most of the 
deep-learning methods for dynamic MRI have been based on 
convolutional neural network (CNN) architectures, including 
those proposed by Schlemper et al. as a cascaded CNN with 
data sharing from previous time points [15], by Qin et al. in a 
recurrent CNN architecture [16], and by Biswas et al. [17] as 
an unfolded CNN with an additional spatiotemporal manifold 
constraint added to (26).

Outlook
Representation learning has made important strides in acceler-
ating dynamic MRI, and it has the potential to change the very 
structure of clinical MRI exams. Today, MRI exams comprise 
a series of different scans that are acquired with a different 
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contrast weighting or interrogate a differ-
ent dynamic process. All of the scans are 
reconstructed independently and typically 
stored for later analysis.

Multidynamic imaging has the poten-
tial to replace the series of independent 
scans with comprehensive, integrated 
single-scan examinations. Currently, the 
time between scans is used for technolo-
gists to make imaging decisions, such as the contrast-weight-
ing selection and ECG trigger-window definition, as well as 
for patients to recover from holding their breath. Scanning 
multiple contrast weightings for a variety of motion states 
would shift these imaging decisions to after the reconstruc-
tion and eliminate breath holds. This would go beyond simply 
reducing the amount of data being acquired by also elimi-
nating the delays between acquisitions. A motion-resolved 
multicontrast paradigm would be a major step toward a fully 
quantitative multiparameter exam for objective, comprehen-
sive tissue characterization.

There are many signal processing opportunities for mak-
ing this new paradigm a reality. Multidynamic CS has only 
explored the use of temporal, finite, different sparsifying 
transforms (for instance, temporal TV), and LRT imaging has 
primarily been limited to the Tucker decomposition. Major 
questions about the optimal sampling design remain, par-
ticularly how to prospectively plan the sampling when physi-
ological timings are unpredictable, such as when a patient’s 
physiology partially controls the sampling pattern. There are 
also open opportunities to extend other decompositions and 
models to their multidynamic counterparts, for example, LR-
plus-sparse [39] tensor models, multidynamic BCS models, 
and multidynamic manifold models. The richness (and mas-
sive size) of the data will also require faster image reconstruc-
tion and necessitate new modes of viewing and analyzing 
high-dimensional scans, all of which are potential areas to 
incorporate more advanced representation-learning approach-
es, including deep learning.

As the newest of the methods described here, deep learn-
ing has perhaps the largest number of open technical problems 
and opportunities. Deep learning in dynamic MRI is currently 
dependent on supervised learning with huge sets of highly rep-
resentative training data, which limits the ability to enable new 
modes of imaging where the labels are not yet available. This 
suggests the importance of developing unsupervised reconstruc-
tion networks and methods of generating realistic, representative 
training data (for example, self-supervised learning where the 
training images are generated by a secondary network).

There are opportunities to explore more advanced loss func-
tions, such as with generative adversarial networks wherein L  
is output by a network, as well as opportunities to go beyond 
( , )t -spacer  networks and explore ( , )t -spacek  and hybrid 
( , ) ( , )t t–k r  networks. The current reliance of deep learning 
on graphics-processing-unit training, where there are strict-
er memory limitations than there is CPU processing, pres-
ents challenges for reconstructing long image sequences and 

dynamic images with three spatial dimen-
sions, and it creates an opportunity to explore 
low-resource architectures. The excellent per-
formance of deep networks for image analy-
sis tasks, although not covered in this article, 
also suggests the opportunity to build com-
bined reconstruction and analysis networks 
that can make clinically useful inferences 
directly from input ( , )t -spacek  data, chang-

ing the imaging pipeline entirely.
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