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Introduction: Achieving high spatio-temporal resolutions in dynamic MRI (DMRI) (eg. myocardial perfusion MRI) is often challenging due to the slow 
nature of MR acquisitions. Recently, several schemes that exploit the low-rank property of dynamic 
datasets were introduced to accelerate dynamic MRI [eg: 1-3]. These methods exploit the similarity of the 
voxel time profiles (intensity variations as a function of time) by expressing them as a linear combination 
of a few orthogonal temporal basis functions. Since the temporal bases and their coefficients (spatial 
weights) are estimated from the under-sampled Fourier data itself, this representation is termed as the blind 
linear model (BLM). This method provides good image quality at high accelerations, when the inter-frame 
motion is not very significant. However, the similarity of voxel profiles often degrades significantly with 
inter-frame motion (eg. free breathing perfusion). Since more basis functions, and equivalently more 
coefficients, are required to accurately represent the resulting dataset using BLM, the maximum 
acceleration that can be achieved using BLM degrades significantly with inter-frame motion. 
 
To overcome this, we introduce a novel dynamic imaging algorithm, based on blind compressed sensing 
(BCS) [4]. We model the time profiles of each voxel as a sparse linear combination of temporal basis 
functions from a large dictionary (see Fig 1). Similar to BLM, the temporal basis functions and spatial 
weights are estimated from the under-sampled Fourier data. Note that the representation is locally low-
rank since the time-profiles are expressed as the linear combination of very few basis functions. Since 
very few coefficients of this representation are non-zero at each voxel, the number of unknowns or 
degrees of freedom (DOF) of this representation is much smaller than that of BLM. Specifically, the huge 
saving in the number of non-zero coefficients dwarf the slight increase in DOF due to the higher number 
of temporal basis functions (since the number of voxels are much larger than the number of time frames). 
Hence, we expect this scheme to provide improved image quality at high accelerations, even when the 
dataset is corrupted with high inter-frame motion. 
 
Methods: We model the Casorati matrix of the DMRI dataset as the product of a sparse coefficient matrix 
UmxR and a dictionary of temporal basis functions, specified by VRxn (see Fig. 1). Here m,n and R are the 
numbers of voxels in each frame, total time frames, and the number of temporal basis functions, 
respectively. Specifically, we pose the simultaneous estimation of the matrices U and V, subject to data-
consistency constraints, as:  

U*,V*{ } = arg min
U,V

A(UV) − b 2
2 + λ1 U l1

+ λ2 V F
2 (1) 

Here A is the Fourier sampling operator that acquires the measurements b on a specified k-t trajectory. We 
consider a sparsity promoting l1 norm on U and an energy preserving Frobenius norm on V. These 
regularizations ensure that the above problem is well-posed. We use a majorize-minimize strategy to 
decompose (1) into simpler sub problems. Specifically, we approximate the l1 penalty with a Huber 
penalty, parameterized by a single parameter β [see 5 for details]:  

U*,V*{ } = arg min
U,V,L

A(UV) − b 2
2 + λ1 L l1

+ λ2 V F
2 s.t.,U = L (2) 

U*,V*{ } = arg min
U,V,L
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+
β
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For a fixed β, the algorithm iterates between three simple steps of (a) shrinkage of L, (b) solving a 
quadratic problem in U and (c) solving a quadratic problem in V. We use fast conjugate gradient (CG) 
solvers to solve (b) and (c). We start with a small value of β and gradually increase it within the loop. The 
Huber approximation of the l1 norm is essentially the Frobenius norm, when β is small. According to [6], 
the solution of the resulting problem is the nuclear norm solution when R >> rank of the signal matrix. 
Thus, we start with the nuclear norm solution and gradually enforce the sparsity of the coefficients/spatial 
weights. This approach makes the algorithm less sensitive to local minima issues. 
 

Example: In Fig. 2, we compare the BCS scheme with the BLM model, which uses nuclear norm 
minimization [3]. We retrospectively under-sample a myocardial perfusion data set (190x90x70), acquired 
using FLASH sequence on a Siemens 3T scanner (TR/TE=2.5/1.5ms).  There is significant motion due to 
improper gating and breathing (see temporal profiles in Fig. 2.b). We sample each of the images using 12 
uniformly spaced radial lines in k-space. The lines were randomly rotated for different frames. This 
pattern corresponds to an acceleration of 7.5, compared to Cartesian sampling. We consider R=45 basis 
functions in the dictionary. The reconstructions show that the BCS scheme is able to recover the subtle 
spatial features with minimal temporal blurring. In contrast, we observe heavy temporal blurring in the 
BLM reconstructions, resulting in loss of details such as the borders of the heart and the papillary muscles. 
We observe similar trends, when we compare BCS with other low rank schemes such as the greedy 
incremented rank power factorization [2] and the minimum non-convex Schatten p-norm scheme; these 
results are not reported here due to lack of space.  
Discussion: We proposed a novel scheme based on blind compressed sensing in dynamic MRI. Our experiments demonstrate that this model provides 
reduced blurring and artifacts over low-rank methods, when dynamic datasets with significant inter-frame motion is considered. 
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Fig1: Blind compressed sensing (BCS) model: The 
temporal profile of each voxel of the dataset is 
modeled as a sparse weighted linear combination of 
temporal bases, picked from a dictionary V. The 
sparse coefficients/weights of the basis functions 
correspond to the columns of U, while the basis 
functions correspond to the rows of V. Note that 
the 1st and 2nd columns of U correspond to right and 
left ventricles, while the 1st and 2nd rows of V are 
the temporal profiles of these regions.  
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Fig 2: Reconstruction from 7.5 fold under-sampled 
data. (a) One time frame of the fully sampled 
dataset, corresponding to a frame with large motion. 
(b) The time profile (through the dotted line in (a)), 
which depicts the perfusion dynamics and 
respiratory motion.  (c) Sampling pattern for one 
frame (d-f) A frame of the BLM reconstruction, its 
temporal profile, and the error (g-i) blind 
compressed sensing (BCS) reconstruction. Note that 
BCS preserves the fine details compared to BLM 
scheme, especially at the white arrows. Also see the 
resolution of papillary muscles and the red arrows 
The differences are depicted in the error images as 
well. A similar trend is observed in other frames.
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