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Blind Compressed Sensing Enables 3-Dimensional Dynamic Free
Breathing Magnetic Resonance Imaging of Lung Volumes

and Diaphragm Motion
th
Sampada Bhave, MS,* Sajan Goud Lingala, PhD,† John D. Newell Jr, MD,‡§
Scott K. Nagle, MD, PhD,k and Mathews Jacob, PhD*

Objectives: The objective of this study was to increase the spatial and temporal
resolution of ~500 milliseconds, spatial resolution of 2.7 � 2.7 � 10 mm3, wi
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resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MR
of lung volumes and diaphragmmotion. To achieve this goal, we evaluate the ut
ity of the proposed blind compressed sensing (BCS) algorithm to recover da
from highly undersampled measurements.
Materials and Methods: We evaluated the performance of the BCS scheme
recover dynamic data sets from retrospectively and prospectively undersampl
measurements. We also compared its performance against that of view-sharin
the nuclear norm minimization scheme, and the l1 Fourier sparsity regularizati
scheme. Quantitative experiments were performed on a healthy subject using
fully sampled 2D data set with uniform radial sampling, which was retrospective
undersampled with 16 radial spokes per frame to correspond to an undersampli
factor of 8. The images obtained from the 4 reconstruction schemes were com
pared with the fully sampled data using mean square error and normalized hig
frequency error metrics. The schemes were also compared using prospective 3
data acquired on a Siemens 3 T TIMTRIOMRI scanner on 8 healthy subjects du
ing free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualit
tively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on t
basis of spatial resolution, temporal resolution, and presence of aliasing artifact
Results: TheBCS schemegives better reconstructions (mean square error = 0.02
and normalized high frequency = 0.133) than the other schemes in the 2D retr
spectiveundersamplingexperiments, producingminimallydistorted reconstructio
up to an acceleration factor of 8 (16 radial spokes per frame). The prospecti
3D experiments show that the BCS scheme provides visually improved reco
structions than the other schemes do. The BCS scheme provides improved qua
itative scores over nuclear norm and l1 Fourier sparsity regularization schemes
the temporal blurring and spatial blurring categories. The qualitative scores f
aliasing artifacts in the images reconstructed by nuclear norm scheme and BC
scheme are comparable.

The comparisons of the tidal volume changes also show that the BC
scheme has less temporal blurring as compared with the nuclear normminimiz
tion scheme and the l1 Fourier sparsity regularization scheme. The minute ven
lation estimated by BCS for tidal breathing in supine position (4 L/min) and t
measured supine inspiratory capacity (1.5 L) is in good correlation with the lite
ature. The improved performance of BCS can be explained by its ability to ef
ciently adapt to the data, thus providing a richer representation of the signal.
Conclusion: The feasibility of the BCS scheme was demonstrated for dynam
3D free breathing MRI of lung volumes and diaphragm motion. A tempor
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whole lung coverage (16 slices) was achieved using the BCS scheme.

Key Words: dynamic 3D free breathing MRI, BCS, lung volume,
diaphragm motion
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D ynamic imaging of respiratory mechanics plays an important ro
in the diagnosis of abnormalities to the active and passive comp

nents involved in respiratory pumping, including diaphragm paresis
paralysis, abnormal chest wall mechanics, and muscle weakness, whic
are a result of neuromuscular, pulmonary, or obesity-related diso
ders.1,2 Clinically, these impaired respiratory mechanics are evaluate
indirectly by respiratory inductive plethysmography, spirometry,
magnetometer.3 Although these schemes can be collected with ve
high temporal resolution, they lack spatial information and hence ca
detect only global changes that occur only during the advanced stag
of the disease.4 Early detection and localization of the disease are ve
crucial for treatment planning.

Magnetic resonance imaging (MRI) is gaining popularity ov
the above techniques because it provides a noninvasive and direct vis
alization of dynamic changes in the diaphragm and chest wall5–8 pos
tions, without exposure to ionizing radiation. The evaluation
dynamic changes in lung volumes and diaphragm movement requir
high spatial and temporal resolution, plus high volume coverage
cover the entire thorax. Achieving entire volume coverage is especial
challenging in obese subjects who are at a high risk for impaired di
phragm movement. The respiratory rate during tidal breathing is 12
16 cycles per minute (~5 seconds per cycle), whereas the normal resp
ratory excursion of the diaphragmatic dome is about 1.5 cm.9 The spee
of the diaphragm is about 0.3 cm/s. Thus, considering a pixel size
3 � 3 mm, the diaphragm position changes at a rate of 1 pixel/s. T
avoid motion blurring, imaging time should be much shorter than 1 se
ond. Although 2-dimensional (2D) imaging techniques can offer hig
temporal resolution, it is challenging to merge the information fro
multiple 2D slices for 3D visualization of the diaphragmatic dom
and volumemeasurements because of the irregular nature of respirato
motion in most subjects.

Research has shown that 3D dynamic MRI (3D-DMRI) is
more suitable option to analyze respiratory mechanics7,10,11 and is r
ported to have higher correlation with spirometry measurements tha
2D-DMRI.12 However, current 3D-DMRI implementations offer lim
ited temporal/spatial resolution and volume coverage. Although im
proved resolution and coverage may be achieved by acquiring 3
volumes at multiple breath-holds, this approach does not provide goo
estimates of respiratory dynamics or account for the hysteresis effe
that the lung exhibits during normal breathing.1,7,9 Furthermore, su
jects with chronic obstructive pulmonary disease have difficulty hol
ing their breath, making motion analysis difficult. Fast imagin
techniques were introduced for 3D-DMRI,12–14 but current schem
still compromise on either spatial resolution or the temporal resolutio
For example, echo-planar imaging–based sequences provide a tempor
www.investigativeradiology.com 1
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resolution of 330ms/frame but can only achieve low spatial resolution
and partial lung coverage. Similarly, 3D fast low-angle shot (FLASH
sequences with Cartesian undersampling, view-sharing, and parall
imaging was used to obtain whole lung coverage,12 at the expense
a poor temporal resolution of 1 second; these schemes can only be use
to image the dynamics during slow and controlled breathing condition
which limits the flexibility of experimental paradigms. More recentl
higher spatiotemporal resolution was reported using a 128-channel co
array15 with a Cartesian 3D-FLASH sequence and generalized aut
calibrated partially parallel acquisition.16 However, these custom-mad
128-channel coils are not widely available, which restricts the wid
spread utility of this scheme.

The main focus of this work was to evaluate the feasibility
blind compressed sensing (BCS) scheme, coupled with 3D stack
stars-based golden angle radial trajectories, to enable the dynamic ima
ing of lung volumes and the diaphragm, with full coverage of the th
rax, at the spatial and temporal resolutions needed to image tid
breathing. We compare the BCS scheme against other state-of-the-a
compressed sensing schemes that model voxel profiles, such as nucle
minimization-based low rank reconstruction, l1 Fourier sparsity-base
regularization,17–20 and the commonly used view-sharing reconstru
tion. We have 2 expert radiologists quantitatively score the reconstru
tions from all the schemes on a 4-point scale to assess diagnost
image quality.
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MATERIALS AND METHODS

Image Acquisition
The institutional review board at the local institution approved a

the in vivo acquisitions. All the volunteers were fully informed of th
nature of the procedure and written consent was obtained. The subjec
were scanned on a Siemens 3 T Trio scanner (Siemens AG, Healthca
sector, Erlangen, Germany) with a 32-channel body array coil.

For retrospectively undersampled 2D acquisition, a fully sam
pled 2D dynamic data set was collected on a normal subject using
gradient recalled echo sequence with uniform radial sampling pa
tern. The sequence parameters were as follows: field of view (FOV
350� 350mm2; slice thickness-10 mm; repetition time (TR)/echo tim
(TE)-2.67/1.17 milliseconds; and matrix size-128 � 128. The spati
resolution was 2.7 � 2.7 � 10 mm3. A total of 180 frames were a
quired with 256 radial spokes per frame, which resulted in a tempor
resolution of 683 milliseconds.

For the prospective 3D acquisition, 8 healthy volunteers (5 me
and 3 women; median age, 28 years) without any evidence of pulm
nary diseasewere included in this study. The 3D dynamic datawere co
lected using a FLASH sequence with a 3D radial stack of sta
trajectory. The 3D acquisition uses a golden angle radial trajectory
the axial plane (kx, ky) combined with a conventional phase encodin
step in the kz direction. The radial spokes were separated by the golde
angle (111.25°) to achieve incoherent sampling. The sequence param
ters for 6 of the 8 data sets are as follows: field of view (FOV)-350
350 mm2; TR/TE-2.37/0.92 milliseconds; partial Fourier factor-6/
base matrix size-128 � 128; and spatial resolution-2.7 � 2.7 � 10 mm
A total of 3500 radial spokes were acquired per slice, and a total
16 slices were acquired to obtain whole lung coverage. The data we
binnedby considering16 radial spokes per frame, resulting in a tempor
resolution of 492.96 ms/frame. The coil sensitivity profiles were es
mated using an Eigen decomposition method.21 The seventh da
set was acquired with a larger FOV: 400� 400 mm2, which resulted
a slightly lower spatial resolution of 3.1� 3.1� 10 mm3. All the oth
scan parameters were the same as those in previous acquisitions. Tw
data sets were collected from the eighth subject, 1 while free breathin
and 1 while breathing from functional residual capacity to total lun
capacity. The scan parameters for these 2 data sets were as follow
2 www.investigativeradiology.com

                              Copyright © 2016 Wolters Kluwer Health, Inc. Unauthori
                              This paper can be cited using the date of access and the
FOV-350 � 350 mm ; TR/TE-2.37/0.92 milliseconds; base matrix siz
128 � 128; spatial resolution-2.7 � 2.7 � 10 mm3. A total of 18 slic
were acquired with 3500 radial spokes per slice. 16 radial spokes we
binned for each frame, which gave a temporal resolution of 683 mil
seconds for these 2 data sets. The scan time for each of these data se
was less than 2 minutes.
Image Reconstruction
In this work, we pre-interpolated the radial data points on

Cartesian grid points that were within 0.5 unit of the measured samp
using linear interpolation. A similar pre-interpolation step is used
constrained reconstruction algorithms for other body part applic
tions.17,22,23 The pre-interpolation was done for all the schemes. Th
enabled us to use fast Fourier transforms (FFTs) and inverse FFT
in the forward and backward models of the algorithm. There was n
noticeable change in the quality of reconstructions obtained fro
pre-interpolated data as compared with the ones obtained from no
Cartesian data with nonuniform FFTs and inverse FFTs.
Signal Representation
The goal of the reconstruction schemes is to recover the dynam

data set Γ from its undersampled measurements. Here, Γ is an M �
Casorati matrix, whereM is the number of voxels in a single timefram
and N is the number of timeframes. In other words, the columns of
represent the signal at every voxel. The measurements are modele
as follows:

bi ¼ Ai Γð Þ þ ni ; i ¼ 1; ⋯;N ð1

where bi is the undersampled measurement and ni is the noise for the i
timeframe. Ai ¼ SiFC , where Si is the undersampling mask, F
Fourier operator, and C is the coil sensitivity. The least squares reco
struction problem can be posed as:

Γ� ¼ argminΓ k A Γð Þ−b k2F|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Data consistency term

: ð2

The compressed sensing schemes considered in this article e
force different priors on the temporal profiles of the data to make th
problem well posed. We discuss each of the schemes in detail below

• Low-rank recovery using nuclear norm minimization18–20: Th
scheme assumes that the temporal profiles of pixels lie in a low
dimensional space. Figure 1a reveals the low rank structure of the da
where the singular values rapidly decay to 0. The problem is form
lated as a convex optimization problem given below:

Γ� ¼ argminΓ k A Γð Þ−b k2F|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Data consistency term

þ λ k Γk�|fflfflfflffl{zfflfflfflffl}
Nuclear norm

; ð3

where λ is the regularization parameter. The nuclear norm, which is a co
vex relaxation of the matrix rank, is defined as k Γk� ¼ ∑ min M ;Nf g

i¼1 σ
whereσi is the singular value ofΓ. The nuclear normminimization schem
can be viewed as a direct alternative to classical 2-step low-rank
schemes, which prelearns the temporal basis functions from navigat
data and uses these functions to estimate the basis images.

• l1 Fourier sparsity regularization: This scheme exploits the sparsi
of the data in the Fourier transform domain along the tempor
© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 1. Illustration of the data representation in different transform domains: The nuclear norm minimization scheme, the l1 Fourier sparsity
regularization scheme, and the BCS scheme rely on constrained modeling of the intensity profiles of the voxels, specified by Γ = UV. The nuclear norm
minimization scheme capitalizes on the efficient representation of the voxel profiles using few basis functions. The coefficients inU, alongwith the singular
values, are shown in a. The singular values of the data (Γ) decay rapidly to 0, indicating that the data can be represented efficiently using few basis
functions. The pseudo-periodicity of the data is exploited by the l1 Fourier sparsity regularization scheme, using the sparse representation of the intensity
profiles in the temporal Fourier transform (x-f space) as seen in b. Panel c shows the sparse coefficients obtained from the BCS scheme. Similar to the
nuclear normminimization scheme, BCS learns the dictionary of the basis functions from the data itself, thus adapting to the dynamic content of the time
series. The adaptation of the dictionary to the signal provides sparser representations, which in turn translates to improved reconstructions. Figure 1 can
be viewed online in color at www.investigativeradiology.com.
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dimension (x-f space) (see Fig. 1b). The convex optimization proble
is formulated as follows:

Γ� ¼ argminΓ k A Γð Þ−b k2F|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
data consistency term

þ λ k ℱ t Γð Þkl1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
temporal Fourier sparsity

; ð4

whereℱt is the Fourier transform in the temporal direction. The l1 nor
in the second term enforces sparsity on the Fourier coefficients alon
the temporal dimension. This approach is a widely used schem
and has similarities to the k-t SPARSE25,26 and k-t FOCUSS27,

schemes, whereas the specific algorithms used to solve them are di
ferent from our implementation. The recovery implicitly assum
that the intensity profiles of the voxels are sparse linear combin
tions of Fourier exponentials.

• BCS22,29 : The temporal profile for each pixel is modeled as a spar
linear combination of atoms from a learned dictionary. Becau
the dictionary that is learned from the undersampled measur
ments is subject specific, not necessarily orthogonal and may b
overcomplete, it provides a richer representation of the data. Th
sparsity enforced on the dictionary coefficients suggests that ve
few temporal basis functions are sufficient to model the tempor
profiles at any pixel. This results in lower degrees of freedo
and hence minimizes artifacts at high acceleration factors. Th
© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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data Γ are modeled as a product of the sparse coefficient matr
U and dictionary V. The signal recovery from the undersample
measurements is posed as a constrained optimization algorith
as shown below:

U�;V�½ � ¼ arg minU;V k A UVð Þ−b k2F|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
data consistency term

þ λ k Uk11|fflfflfflfflffl{zfflfflfflfflffl}
Sparsity on spatial weights

suchthat k V k2F< 1 ð

The second term is the sparsity promoting l1 norm on the coe
ficient matrix U. The optimization problem is constrained by impo
ing unit Frobenius norm on the overcomplete dictionary V, whic
makes the recovery problem well posed and avoids scale ambiguity i
sues. Our experiments22 show that the joint estimation of the bas
functions and its coefficients from a golden angle radial trajectory
well posed, thanks to the oversampling of center of k-space offere
by radial trajectories.

• View-sharing: In this scheme, each frame of the data set is reco
structed by combining information from a few adjacent frames. F
this study, we combined 200 radial spokes to reconstruct each fram
with a step size of 16 to match the temporal resolution with other r
construction schemes.
Implementation of Constrained Algorithms
All the above constrained algorithms are implemented using a

ternating minimization algorithms; these schemes alternate betwee
www.investigativeradiology.com 3
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(a) a backward mapping from k-space to image space to enforce da
consistency and (b) a projection step, which is a shrinkage or projectio
operator. These algorithms are guaranteed to converge to the glob
minimum of the cost function, provided it is convex (nuclear nor
and Fourier sparsity regularization, specified by equations (3) and (
respectively). Because of the nonlinear nature of the above algorithm
coupled with a nonuniform k-space sampling, it is complex to analy
the spatial and temporal smoothing behavior of the algorithms. How
ever, the projection step provides useful insights on how each of the
schemes removes the aliasing patterns that results from the undersam
pling. We perform a brief analysis of the constrained algorithms to o
tain more insights of the tradeoffs involved in accelerating using the
schemes in Appendix A.

The discussion in Appendix A shows, constrained schemes th
model the temporal profiles reduce aliasing artifacts by nonlocal view
sharing. Specifically, they recover each pixel in the data set as a weighte
linear combination of other pixels in the data set, possibly distant fro
it in time. Note that this approach is drastically different from classic
view-sharing schemes that combine the data from nearby frames to r
cover each frame; we term such classical view-sharing schemes as loc
to differentiate them from the nonlocal ones discussed above. Nonloc
averaging combines information from images in similar respiratory phas
that are distant in time, thus minimizing the temporal blurring introduce
by local view-sharing schemes, while achieving good suppression
FIGURE 2. Comparison of different schemes on 2D fully sampled data set:
the nuclear norm minimization scheme, the l1 Fourier sparsity regularizatio
shows a single frame for each of the schemes. The middle row shows the er
time profiles of all the schemes at a cross-section shown by the yellow dott
superior performance than other schemes do. All the schemes except BCS s
images and time profiles. Figure 2 can be viewed online in color at www.i

4 www.investigativeradiology.com
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noise-like aliasing artifacts. The analysis shows that the BCS and l1 Fo
rier sparsity regularization schemes perform spatially varying nonloc
view-sharing, whereas the nuclear normminimization scheme perform
space invariant nonlocal view-sharing. The adaptation of the view
sharing strategy with the spatial location enables BCS and l1 Fouri
sparsity regularization to achieve improved denoising performance.
Experiment Details
The fully sampled data set (acquired with 256 radial spokes) w

retrospectively undersampled using 16 radial spokes per frame, corr
sponding to an acceleration factor of 8. This retrospectively unde
sampled data set was reconstructed with the above-mentioned nucle
norm minimization scheme, the l1 Fourier sparsity regularizatio
scheme, BCS, and the standard view-sharing scheme. The reco
structed data were compared with the fully sampled acquisition. T
study the performance of the BCS scheme as a function of acceleratio
the 2D data set undersampled using 20, 16, 12, and 10 radial spok
corresponding to acceleration factors of 6.4, 8, 10.2, and 12.8, respe
tively. The slice-by-slice reconstruction was performed for all the 3D
DMRI data sets using the above-mentioned schemes. All the reco
structions were performed in MATLAB on a desktop computer (Int
Xeon E5-1620 with 8 core CPUs, 3.6 GHz processor, and 32 G
RAM) with a 5.6 GB NVDIA graphical processing unit.
The figure shows comparison of reconstructions obtained from view-sharing,
n scheme, and the BCS scheme with the fully sampled data. The top row
ror images with respect to the fully sampled data, and the last row shows the
ed line. From the MSEs and the HFEN metric, we observed that BCS gives
uffer from spatiotemporal blurring, as shown by the yellow arrows in the error
nvestigativeradiology.com.
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Image Quality Analysis
To compare reconstructions, we used the following metrics:

• Mean square error (MSE): In the 2D experiments, the fully sample
groundtruthdatawereusedas reference tocalculate the reconstructione
rors. The optimal regularization parameterλwas chosen such that the e
ror between reconstructions and the fully sampled data, specified by

MSE ¼ kΓrecon−Γorig k2F
kΓorig k2F

� �
; ð6

was minimized. However, the MSE metric could not be used for th

e.

t-
ty

Þ

e

g
in
S
r-
l-
as
3D experiments, as the fully sampled ground truth was not availabl
Hence, to optimize for λ, we used the L-curve strategy.30

• Normalized high-frequency error metric (HFEN): The HFEN me
ric31 gives a measure of spatial blurring of the image and the quali
of fine features and edges. The HFEN metric is defined as

HFEN ¼ 1
N
∑N

i¼1

kLoG Γref ; i

� �
−LoG Γrecon; i

� �k22
kLoG Γref ; i

� � k22
 !

; ð7

where N is the number of pixels in the image and LoG is th

er e
Laplacian of the Gaussian filter that captures edges. The filt
FIGURE 3. Performance of the BCS scheme at different acceleration factors
corresponding error images (rows 3–4) of reconstructions obtained by retro
per frames, resulting in acceleration factors (R) of 6.4, 8, 10.2, and 12.8, res
began to observe temporal blurring, as shown by the arrows in the error im
color at www.investigativeradiology.com.

© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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specifications are kernel size of 15� 15 pixels, with a standard d
viation of 1.5 pixels.31 The regularization parameters for all th
schemes were optimized using the HFEN and MSE values in ca
of 2D experiments.

• Qualitative evaluation-clinical scoring: Each of the 3D dynamic r
constructions was evaluated for spatial resolution, temporal res
lution, and artifacts by 2 expert cardiothoracic radiologists usin
a 4-point scale (4: outstanding diagnostic quality; 3: good dia
nostic quality; 2: average diagnostic quality; 1: limited diagnost
quality; and 0: uninterpretable). The image data sets were viewe
using OsiriX.

Image Postprocessing to Demonstrate the Utility of
3D-DMRI

To demonstrate the potential applications of this work, the lun
was segmented using a region-growing algorithm implemented
MATLAB after reconstructing the 3D dynamic data using the BC
scheme, the nuclear normminimization scheme, and the l1 Fourier spa
sity regularization scheme. This analysis was done for the data set co
lected with the tidal breathing maneuver on subject 8. The analysis w
repeated for the same subject with deep breathing maneuver using th
: The figure shows the single frame (row 1), the time profiles (row 2), and the
spectively undersampling the data set with 20, 16, 12, and 10 radial spokes
pectively. Reliable reconstructions are achieved up to R = 8. Beyond R = 8, we
ages. All the images are in the same scale. Figure 3 can be viewed online in

www.investigativeradiology.com 5
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BCS reconstructed data. The lung volumewas calculated in terms of th
number of pixels within the lung region. The velocity maps of the di
phragm were obtained using optical flow method,32 which was impl
mented using a multiscale approach.

RESULTS

Dynamic 2D Experiments
The performance of all the schemes was first evaluated by retr

spectively undersampling a 2D fully sampled data set. Figure 2 shows
spatial frame from the dynamic 2D data set (top row), the correspon
ing error images (middle row), and the time profile at a cross-sectio
shown by the yellow line in spatial frame (last row). The columns co
respond to the fully sampled data set (first column) and the differe
reconstructions from retrospectively undersampled data. All the com
parisons were done at an undersampling factor of 8 (using 16 radi
spokes per frame). We observed that the reconstructions from the n
clear norm minimization and l1 Fourier sparsity regularization schem
suffer from spatiotemporal blurring, especially along the diaphrag
borders, as indicated by the arrows in the error images. The loc
view-sharing scheme combines information from adjacent frames (1
adjacent frames were combined for reconstruction of each frame
which results in significant blurring of the respiratory motion
seen from the time profiles. The BCS scheme has the lowest MS
errors (0.0232) and HFEN values (0.133), which indicates superi
FIGURE 4. Comparison of different schemes on dynamic 3D free breathin
minimization scheme, the l1 Fourier sparsity regularization scheme, and the
the BCS gives better reconstructions than other schemes do. It is seen that
schemes (see yellow arrows). Figure 4 can be viewed online in color at ww
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reconstruction and less spatiotemporal blurring as compared wi
the other schemes.

Figure 3 shows the comparisons of the reconstructions from 2
16, 12, and 10 radial spokes per frame with the fully sampled data. W
observed that BCS gives reliable reconstructions with 20 and 16 radi
spokes per frame. A reconstruction from 12 or 10 radial spokes resul
in temporal blurring, as shown by the arrows. In the 3D experiments, w
fixed the number of radial spokes per frame to 16 for all the scheme

Dynamic 3D Experiments
Figure 4 shows the comparisons of the 4 schemes for a subjec

The figures show a single frame and a time profile along the cros
section for 4 of the 16 slices. We observed that the local view-sharin
scheme suffers from temporal blurring and aliasing artifacts. The n
clear norm minimization scheme provides better reconstructions tha
view-sharing does, but it exhibits more spatiotemporal blurring tha
the BCS reconstructions, as shown by the arrows. Reconstructions fro
both the l1 Fourier sparsity regularization scheme and the BCS schem
show comparable image quality in the spatial domain, as seen from th
spatial frames in both figures. However, the l1 Fourier sparsity regula
ization scheme results in higher temporal blurring than BCS does.
slices where the tissue motion is very subtle (slice 6 in Fig. 4), BCS pr
serves the motion, whereas all other schemes result in blurring of tem
poral details. One of the radiologists carefully analyzed the performan
of all the schemes as a function of slice position while clinical scorin
g: The figure shows comparison between view-sharing, the nuclear norm
BCS scheme (rows 1–4) for 4 of the 16 slices on subject 2. We observed that
BCS shows superior spatiotemporal fidelity in comparison with the other
w.investigativeradiology.com.
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as shown in Figure 5 and found that the performance of the BC
scheme was relatively insensitive to the slice position compared wi
other schemes. Specifically, the reconstructions of the anterior and po
terior slices of the lung (second and third columns of Fig. 5), obtaine
by the other schemes, showed higher degradation in image quality tha
the more central slices (first column of Fig. 5), especially in terms
spatial and temporal blurring (pointed by arrows).

Table 1 shows the visual scores of all the 4 schemes by both th
radiologists (denoted as R1 and R2) based on 3 different factors: (
aliasing artifacts, (b), temporal blurring, and (c) spatial blurring. Th
scores from both the radiologists suggest that the BCS scheme perform
better than other schemes in the temporal blurring (Table 1, part b) an
spatial blurring (Table 1, part c) categories. The improved performan
of BCS can be attributed to the spatially varying nonlocal averaging fe
ture and its ability to adapt to the cardiac and respiratory patterns of th
FIGURE 5. Performance of all the schemes as a function of slice position: T
minimization scheme, the l1 Fourier sparsity regularization scheme, and th
anterior (second column), and posterior (third column) of the lung. We ob
blurring in the slices at anterior and posterior regions of the lung than thos
position as compared with other schemes. Figure 5 can be viewed online i

© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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specific subject. The qualitative scores for aliasing artifacts are rough
the same for the nuclear norm minimization scheme (3.75 ± 0.
2.62 ± 1.19) and the BCS scheme (and 3.62 ± 0.51, 2.62 ± 0.91); th
2 figures within parentheses denote the mean scores from R1 and R
respectively, and the number following ± is the standard deviatio
We observed that the interobserver variability is high for this catego
compared with the others. The scores for the view-sharing scheme a
much lower than those for the other 3 schemes for all the 3 categori
from both radiologists. In summary, the BCS scheme, the nuclear nor
minimization scheme, and the l1 Fourier sparsity regularization schem
perform comparably in terms of minimizing the aliasing artifacts. How
ever, BCS scheme outperforms all other schemes in terms of minimi
ing spatiotemporal blurring.

Figure 6 shows the lung volume as a function of time and th
lung segmentation contours for the BCS, nuclear norm minimizatio
he figure shows comparison between view-sharing, the nuclear norm
e BCS scheme (rows 1–4) for slices positioned at the center (first column),
served that all schemes except the BCS scheme suffer from higher temporal
e in the center region. The BCS scheme is relatively insensitive to the slice
n color at www.investigativeradiology.com.
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TABLE 1. Clinical Scores of 8 3D-DMRI Data Sets for All 4 Schemes by Both Radiologists

BCS Nuclear Norm Minimization l1 Fourier Sparsity Regularization View-Sharing

R1 R2 R1 R2 R1 R2 R1 R2

a. Clinical scores: aliasing artifacts
Subject 1 4 1 4 1 3 1 1 1
Subject 2 3 3 4 3 2 3 1 1
Subject 3 4 4 4 4 4 4 1 2
Subject 4 4 3 2 3 3 3 1 2
Subject 5 4 3 4 3 2 3 1 2
Subject 6 4 2 4 2 4 2 1 1
Subject 7 3 3 4 4 3 2 1 1
Subject 8 3 2 4 1 3 1 1 0
Average scores 3.62 ± 0.51 2.62 ± 0.91 3.75 ± 0.7 2.62 ± 1.19 3 ± 0.76 2.37 ± 1.06 1 ± 0 1.25 ± 0.7

b. Clinical scores: temporal blurring
Subject 1 4 4 2 3 3 3 0 0
Subject 2 4 4 3 3 3 4 2 1
Subject 3 4 4 1 3 2 3 1 1
Subject 4 4 4 2 3 3 3 1 1
Subject 5 4 4 3 4 2 4 0 1
Subject 6 4 4 2 2 2 2 1 1
Subject 7 4 4 1 2 2 2 0 1
Subject 8 4 4 3 3 2 3 0 0
Average scores 4 ± 0 3.87 ± 0.35 2.21 ± 0.83 3 ± 0.75 2.37 ± 0.51 2.5 ± 1.3 0.62 ± 0.74 0.75 ± 0.46

c. Clinical scores: spatial blurring
Subject 1 4 4 2 3 3 3 1 4
Subject 2 3 4 2 4 3 2 1 3
Subject 3 4 4 2 4 3 3 1 4
Subject 4 4 4 2 4 3 3 1 4
Subject 5 4 4 3 4 3 2 1 4
Subject 6 4 4 3 4 3 2 1 4
Subject 7 4 4 2 4 3 3 1 3
Subject 8 4 4 2 4 3 3 1 3
Average scores 3.87 ± 0.35 4 ± 0 2.25 ± 0.46 3.87 ± 0.35 3 ± 0 2.63 ± 0.52 1 ± 0 3.62 ± 0.51

We observes that all schemes except view-sharing are comparable in terms of minimizing aliasing artifacts for each radiologist, as seen in part a. However, there is
interobserver disagreement (different scores by R1 and R2) in the scores. The BCS scheme has higher scores than all the other schemes in temporal and spatial blurring
categories (parts b and c), which indicates that the BCS has minimal spatiotemporal blurring as compared with the other schemes. There is good agreement between the
scores by both radiologists for temporal and spatial blurring categories.
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and l1 Fourier sparsity regularization schemes on 1 subject with tid
breathing maneuver. The change in lung volume for BCS (approx
mately 200 mL) was significantly different from that for the nucle
norm minimization scheme (around 150 mL) and l1 Fourier sparsi
regularization scheme (<100 mL). The contours depict the bounda
of the lung obtained from the segmentation of the reconstruction
The 2 time points (a and b) in the figure correspond to maximum insp
ratory volume. From the contours, we observed that at maximum insp
ration, the boundary of the lung for the nuclear norm minimization an
l1 Fourier sparsity regularization schemes is higher than that for th
BCS scheme, which means that the volume of the lung is less tha
that for the BCS scheme. This is attributed to higher temporal blu
ring in the other 2 schemes as compared with the BCS scheme. Tim
point c corresponds to maximum expiration. From the last row in th
figure, we observed that the segmentations from all the 3 schem
are the same. The tidal volume analysis could not be performed o
the view-sharing scheme because the reconstructions in this ca
suffered from aliasing artifacts, which resulted in poor segmentatio
of the lungs.
8 www.investigativeradiology.com
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Figure 7 shows the change in volume as a function of time an
the segmented lung volumes for 1 subject with tidal breathing and dee
breathingmaneuvers. The lungwas segmented from the reconstructio
obtained using the BCS scheme. The change in lung volume was a
proximately 200 mL. The normal minute ventilation was calculated
tidal volume � number of breathing cycles in a minute, which w
found to be 4 L/min. In case of deep breathing maneuver, we measure
the supine inspiratory capacity, which was found to be 1.5 L. This co
relates well with the literature for normal subjects in the supine positio

The motion of the diaphragm as tracked using an optical flo
method is shown in Figure 8. Two sets of 2 frames each, 1 set with
large change in the diaphragm position (red segment and blue segmen
and 1 with little change in the diaphragm position (green segment an
orange segment), were chosen during inspiration and expiration. Th
velocity vector maps and the color-coded velocity maps are shown
each of the cases. Figures 8a and b show the velocity maps during insp
ration and Figures 8c and d show the velocity maps during expiratio
From the color-coded velocity maps, we observed that a higher di
placement in the diaphragm position (higher diaphragm velocit
© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 6. Comparison of BCS, Nuclear norm minimization, and l1 Fourier sparsity regularization schemes for changes in lung volume as a function of
time for subject 8: The plot shows the volume of lung (inmilliliters) as a function of time obtained from reconstructions using BCS (in red), nuclear norm
minimization (in green), and l1 Fourier sparsity regularization (in blue). The second, third, and fourth rows show the lung segmentation contours for the 3
schemes at 3 time points a, b, and c, respectively. The contours are shown for 3 of the 18 slices. From the plot aswell as from the segmentations, we can
see that the nuclear norm minimization and l1 Fourier sparsity regularization schemes suffer from considerable temporal blurring. Note that the
segmentations at time point c (peak expiration) are almost the same. This is expected because the position of the diaphragm changes more during
inspiration than during expiration. Figure 6 can be viewed online in color at www.investigativeradiology.com.
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correlates well with the observed change in lung volume between th
corresponding frames during both inspiration and expiration.
el
a-
u-
ar
e,
g
r-
c-
y.
d
of
-
-
le
g-

g
es
-
m
l1
al
e-
ic
g,
al
n
ar
g-
i-
e
s-
se
es
DISCUSSION
The application of compressed sensing, together with parall

imaging to accelerate 3D dynamic imaging of lung volumes and di
phragm motion, has not been studied extensively in the past. We eval
ated the performance of 4 different schemes (view-sharing, nucle
norm minimization scheme, l1 Fourier sparsity regularization schem
and BCS scheme) in accelerating 2D and 3D dynamic free breathin
MRI of the thorax in 8 normal subjects. In both our 2D and 3D expe
iments, we observed that the BCS scheme yields superior reconstru
tions compared with other schemes qualitatively and quantitativel
The BCS scheme, along with golden angle sampling patterns, offere
a temporal resolution of ~500 milliseconds and a spatial resolution
2.7� 2.7� 10 mm3 with whole lung coverage, while maintaining im
age quality. To the best of our knowledge, this is the first work that dem
onstrates temporal resolution of less than 1 second, along with who
coverage of the thorax, which enables 3D free breathing dynamic ima
ing of lung volumes and diaphragm motion.
© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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We observed that the classical view-sharing scheme suffers fro
severe temporal blurring as it combines information from adjace
frames. Because the data acquired are free breathing, the respirato
motion between adjacent frames is very high. Hence, the view-sharin
approach results in extensiveblurring. In contrast, the constrained schem
can be thought of as nonlocal view-sharing schemes; their ability to com
bine information from frames/pixels that are highly similar enables the
to reduce blurring. We observed that the ability of the BCS and the
Fourier sparsity regularization scheme to spatially adapt the nonloc
averaging depending on the dynamics enables them to provide better r
constructions than the nuclear norm minimization scheme. In dynam
data sets with regions corresponding to strikingly different dynamics (e
cardiac and respiratory motion), the ability to spatially adapt the nonloc
averaging can give improved results. The l1 Fourier sparsity regularizatio
scheme is sensitive to irregular voxel profiles resulting from nonline
interactions between cardiac and respiratorymotion. This is because irre
ular voxel profiles result in a higher number of nonzero Fourier coeff
cients, thus disrupting the sparsity assumption. The regularity of th
breathing patterns will vary from subject to subject, leading to inconsi
ent performance of the l1 Fourier sparsity regularization scheme. The
schemes may not be reliable in the dynamic assessment of lung volum
www.investigativeradiology.com 9
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FIGURE 7. Changes in lung volume as a function of time: The figure shows the changes in lung volumes as a function of time in case of tidal breathing
maneuver (shown on the left) and deep breathing maneuver from total lung capacity to functional residual capacity (shown on the right). The
segmented lung volumes during peak inhalation and peak exhalation are also shown for both breathingmaneuvers. The tidal volumewasmeasured to be
approximately 200 mL and the normal minute ventilation was around 4 L/min. The supine inspiratory capacity was measured to be 1.5 L. Note that
these numbers are for the supine position. Figure 7 can be viewed online in color at www.investigativeradiology.com.
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during free breathing in patients with emphysema or other causes of dy
pnea. The patient-specific dictionaries in the BCS schememay be a bett
choice inpatientswhoare shortofbreath; these learnedbasis functionsw
result in a sparser data representation and hence provide reliable recove
from fewermeasurements. In addition, incoherent sampling by golden a
gle ordering aids in obtaining a sparser representation, leading to superi
reconstructions. Other interleaved sampling patternsmay also lead to sim
ilar accelerations; however, a thorough validation of this claim is beyon
the scope of this article.We observed that there are currently several diffe
ent flavors of compressed sensing implementations,whichmaybe applie
to this specific problem.We restrict our comparisons in thiswork to few
the state-of-the-art dynamic imaging schemes because rigorous compar
sonwithallof themisbeyond thescope; alternate implementationsof the
algorithmsmayproduce higherquality reconstructionswith less tempora
spatial blurring and aliasing artifacts than reported in this work. We hav
used the radial FLASH sequence to demonstrate the feasibility of th
BCS scheme. However, this scheme can be combined with more efficie
trajectories with longer readouts (e.g. multishot echo-planar imagin
multishot spiral) to further improve spatial and temporal resolution an
TE, which is the focus of our current work. The acceleration provided b
BCS can enable us to keep the readout duration small enough tominimi
B0-induced distortions and losses.

The average scores from both the radiologists indicate goo
agreement for spatial and temporal blurring criteria. There is relative
higher interobserver variability in scores for the aliasing artifact crit
rion, but the mean scores from both the radiologists suggest that th
BCS scheme performs better. The postscoring discussion revealed th
1 of the radiologists gave more importance to the blurring and artifac
that affected the diaphragm motion or diaphragm delineation. In co
trast, the other radiologist rated the data sets based on the blurrin
and artifacts in the whole image rather than placing more emphas
on the diaphragm. This explains the bias in the scores pertaining to sp
tial blurring. The number of subjects is insufficient to perform statistic
analysis for interobserver agreement.

Our preliminary results using the BCS scheme for dynamic im
aging of lung volumes and diaphragm motion obtained from a sing
10 www.investigativeradiology.com
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data set seem promising. The normal minute ventilation in a restin
adult in the upright position is about 5 to 8 L/min.33,34 However, th
normal minute ventilation in the supine position is less than in the u
right position,33,34 and all of our MRI images were obtained in the s
pine position. The measured minute ventilation of 4 L/min is with
the normal range for a supine subject. The measurement of minute ve
tilation is useful in a number of disease mechanisms that produce art
rial hypercapnia.35 The lung volumes were segmented using a simp
region growing approach with minimal user interference. There a
more sophisticated lung segmentation algorithms, including th
fuzzy-connectedness algorithm, that could be performed to further im
prove our lung segmentation.

The proposed imaging protocol acquires 3D data with 16 par
tions using the stack of stars trajectory; the sampling pattern is the sam
for all the partitions, which enables slice-by-slice recovery. Althoug
the number of slices is sufficient for good depiction of diaphragm an
lung volume dynamics in normal subjects, it may not be sufficient f
obese subjects. Improved slice coverage may be obtained using ful
3D recovery exploiting the spatial redundancies and using 3D traject
ries. The current sequence uses a 3D stack of stars trajectory, where th
sampling along the kz direction is uniform. Because the kz direction
fully sampled (except in some cases where partial Fourier recovery
used), we compute a Fourier transform along kz and recover each sli
independently. We anticipate that using different angles for differe
kz planes as well as sampling different kz planes with different samplin
densities will provide a more incoherent and appropriate samplin
pattern. This strategy may result in improved recovery, but at the co
of higher computational complexity and memory demand, becau
we cannot decouple the problem to solve for each slice indepe
dently. The golden angle-sampling pattern was used to achieve inc
herent sampling across timeframes; however, other interleave
patterns can be used with BCS to provide these accelerations. O
future work will focus on these and other image reconstructio
schemes that are optimized for individual patients with respirato
disorders, including chronic obstructive pulmonary disease, asthm
and cystic fibrosis.
© 2016 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 8. Tracking diaphragmmotion using velocity maps: The motion of the diaphragmwas tracked at 2 time points between inspiration (a, b) and 2
time points between expiration (c, d). The velocity from inspiration to expiration is considered positive (in green) and the velocity from expiration to
inspiration is considered negative (in red). The velocity fieldmaps and the color-coded velocitymaps are shown for all 4 cases. The change in lung volume
shown by blue segment is much lesser than the change in lung volume shown by red segment. This translates to higher diaphragmmotion in frames in
red segment as compared with the blue segment as seen from the color coded velocity maps in a and b. Similar results were observed during both
inspiration and expiration. Figure 8 can be viewed online in color at www.investigativeradiology.com.
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In conclusion, our study indicates that the BCS scheme gives i
dividualized reconstructions with diagnostically useful image quali
and minimal spatiotemporal blurring as compared with other accele
ated imaging schemes. We showed that 3D dynamic imaging of lun
volumes and diaphragm motion with high spatial and temporal resol
tion is achievable using the BCS scheme.
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APPENDIX A

Tradeoffs in Image Recovery Using
Constrained Algorithms

The nuclear minimization scheme, the l1 Fourier sparsi
regularization scheme, and the BCS rely on modeling the tempor
profiles/columns of the Casorati matrix. The sparsity priors o
the coefficients U in BCS and on the Fourier coefficients
the l1 Fourier sparsity regularization scheme cause many of th
coefficients to be 0. Hence, these schemes use different bas
functions at different pixels. The nuclear norm minimization schem
in contrast, does not enforce any sparsity before and hence uses th
same basis functions at each pixel. The projection of the intensi
profile at the pixel (x, y), denoted by the vector dρ x;yð Þ , is obtained asdρ x;yð Þ ¼ P x;yð Þρ x;yð Þ;

where the matrix P(x,y) is the specified by

P x;yð Þ ¼ V
0
ac VacV

0
ac

� �−1
Vac: ðA:1

The rows of the matrix Vac are the temporal basis function
that are active at the pixel. The above relation shows that the intensi
at the ith frame (ith row of ^ρ x;yð Þ ) is obtained as the weighted line
combination of all the entries in ρ(x,y); the weights are specified b
the ith row of P(x,y). We term the rows of the P(x,y) matrix in Eq. A
as the temporal point spread function (TPSF) because it characteriz
averaging across time performed by the above-constrained schem
to remove aliasing, which is noiselike in case of radial undersamplin
(see Fig. A.1). We observe that each row of the matrix gives th
weights for the corresponding time point.

Since we use the l1 norm, which is a convex relaxation
l0 sparsity, the recovered coefficients are not exactly sparse an
have many small nonzero coefficients. Similarly, the recovere
matrix is not exactly low rank in the nuclear norm setting. F
visualization purposes, we truncate the coefficients whose magnitud
are less than 0.1% of the maximum in the Fourier sparsi
regularization and BCS settings to generate Figure A.1. Similarl
we perform a singular value decomposition of the recovere
matrix, followed by a truncation of singular values less than 0.1
of the maximum in the nuclear norm scheme. We stress that th
truncation is used only for visualization; the actual algorithms d
not use truncation. Figure A.1 shows the TPSF for 1 time poi
corresponding to peak inhalation (specified by solid orange lin
obtained from the reconstructed data and the corresponding sign
profiles at 3 pixels. The pixel intensity at a specific pixel and tim
point in the denoised image is obtained as a weighted line
combination of pixels at all the time points at the same spati
location; the weights are specified by the value of the TPSF. W
observe that the TPSF values are higher for frames with simil
respiratory phase (marked by dotted orange markers), which impli
that these pixels contribute to the summation heavily. We observ
that the TPSF is spatially and temporally varying for the BCS an
l1 Fourier sparsity regularization scheme. Because the low-ran
minimization scheme uses the same set of basis functions at eac
pixel, in this case, the TPSF is only temporally varying. The TPS
for view-sharing method is both temporally and spatially invarian
as seen in Figure A.1.
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FIGURE A.1. Illustrations of different algorithms: The TPSFs at a specific timeframe at peak inhalation (shown by solid orangemarker) and the underlying
signal time profile are shown for 3 different pixels. The TPSF plots show that all the 3 constrained schemes provide nonlocal averaging of pixel values,
thus offering good denoisingwithout resulting in temporal blurring. However, the TPSF of view-sharing is spatially and temporally invariant and thus leads
to significant temporal blurring. The TPSFs of the BCS and l1 Fourier sparsity regularization schemes are spatially varying, whereas the nuclear norm
minimization scheme is spatially invariant. We see that the TPSF from BCS is in good correlation with the underlying time profiles (black curves) at
the respective pixels. The TPSF for the timeframes shown by the solid orange marker has high values corresponding to timeframes in the similar
respiratory phase (shown by dotted orange marker). These frames contribute predominantly to the recovery of the specific frame because this
recovery is a weighted combination of signal at other timeframes and the weights are specified by TPSF. Figure A.1. can be viewed online in color at
www.investigativeradiology.com.
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