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0.1 Introduction

Dynamic MRI (DMRI) involves imaging physiological processes that are evolv-
ing in time. It is central to several research and clinical applications includ-
ing cardiovascular, pulmonary, abdominal, flow, and vocal tract imaging. The
utility of competing methods such as computed tomography (CT) are often
prohibitive in dynamic imaging due to the high doses of ionizing radiation. In
addition, the ability of MRI to provide unique contrast and functional informa-
tion distinguishes itself from other modalities in several of these applications.

The main challenges faced by DMRI can be attributed to the slow acquisi-
tion nature of MRI, which often results in undesirable tradeoffs betweens spa-
tial resolution, temporal resolution, and number of slices that can be acquired.
The classical solutions in some DMRI applications such as cardiac cine imaging
include cardiac gating to exploit the periodicity of cardiac motion and breath-
holding to eliminate respiratory motion. However, gating is often unreliable in
arrhythmia patients, due to high variability in the heart-rates, and can lead to
missed triggers. In addition, many subjects cannot tolerate the long breath-hold
durations that are needed to achieve high spatio-temporal resolutions that are
needed in many applications. Besides, the need for intermittent pauses for the
subjects to recover often results in long scan times, which affects patient comfort
and throughput. Recently, several researchers have introduced accelerated ac-
quisition schemes that exploit the advances in parallel receive coil technology to
improve DMRI. Similarly, the use of compressive sensing to static and dynamic
MRI has been an active research area with lot of important contributions, which
are covered in detail in the earlier chapters.

In this chapter, we focus on recent advances in image representations that
can adapt to the data (data-dependent representations), thus enabling the ex-
ploitation of the redundancy in the data. Since these adaptive representations
are considerably more efficient in representing the dynamic signal, they provide
improved reconstructions over classical linear and compressed sensing methods
that rely on pre-determined basis sets (e.g. Fourier/Wavelet). We also highlight
explicit and implicit motion compensation strategies to further improve DMRI
reconstruction in the presence of significant inter-frame motion. These methods
have the potential to enable ungated and free breathing three-dimensional ac-
quisitions, which can improve the workflow in several DMRI applications such
as cardiac, pulmonary imaging. While we have made every attempt to provide
a good overview of the field, it is by no means comprehensive; the contents of
the chapter are certainly biased by our own research interests.

The chapter is organized as follows. We will start with a brief review of gated
and breath-held acquisitions, followed by classical linear and compressed sensing
methods. We then introduce blind linear (low rank) and blind compressed
sensing methods that learn the representation from the data itself. The later
sections describes deformation compensation schemes that can be combined
with compressed sensing and low-rank methods, which is followed by manifold
models that are also learned from the data.
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Figure 1: Segmented versus Real time acquisitions: Segmented acquisitions rely
on ECG gating signals and subjects ability to maintain perfect breath-holding
to fill the k-space of every cardiac phase across several heart beats. Real time
acquisitions designed to match the spatio-temporal resolutions of segmented
acquisitions attempts to recover the underlying dynamic images from severely
sub-sampled k-space measurements.
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0.2 Gated and real time acquisitions in DMRI

The MRI data acquired from a static object can be modeled as the spatial
Fourier transform (k-space) samples of the object that is support limited in
space (often denoted as rε(x, y, z)). The classical approach is to choose the
spacing between k-space samples according to Nyquist sampling rate to avoid
alias artifacts, while the extent of k-space coverage determines the spatial reso-
lution of the reconstructed image. In dynamic imaging, one can view the signal
as a support limited signal in space and temporal frequency (f); the reconstruc-
tion of the signal thus involves the recovery of a finitely supported signal in the
r − f (or popularly termed as x − f) domain from its Fourier samples in the
complementary domain (k − t space). Since MRI is a slow imaging modality,
the number of samples that can be acquired in a finite time is limited; this often
results in practical limitations on the achievable spatio-temporal resolution. In
a few applications such as cardiac functional cine imaging, and coronary artery
imaging, one can use gating signals (such as electro-cardiogram (ECG), or pulse
trigger signals) to over come the slow MRI encoding process (see Figure 1).
Specifically, assuming the heart to be at the same position at each heart beat,
the measurements from different heart beats are stitched together to obtain fully
sampled k-space data. This approach is only successful if the subject holds his
breath; the motion will be modulated by respiratory motion in the absence of
breath-holding. The maximum achievable spatio-temporal resolution is thus
limited by the duration of breath-hold.

While ECG gating and breath-holding is the first choice for functional cine
imaging in the clinic, this approach has a few practical challenges. Firstly,
ECG triggering is unreliable in the presence of high field strengths [1], and
while imaging subjects with arrhythmia. Secondly, long breath hold demands
cannot be tolerated by a wide range of patient population such as those with
compromised pulmonary function, and also limits its utility in imaging pediatric
subjects. Besides, the use of this technique to image multiple slices often requires
long gaps between acquisitions to allow the subjects to recover from breath-
holding, resulting in long acquisition times. In addition, the slices that are
acquired from multiple breath-holds may not be perfectly aligned, making it
difficult to quantify the data. ECG gating is also employed in applications
such as myocardial first pass perfusion imaging, where one is interested in the
temporal changes in image contrast due to the passage of a bolus of contrast
(e.g. gadolinium). The gating is used to capture the same cardiac phase (usually
the diastole phase) across multiple beats. The signal changes due to the passage
of the contrast agent is quantified in the regions of the myocardium, to detect
abnormalities in myocardial perfusion. Since the diastole duration is limited,
the spatial resolution and the number of slices that can be covered is highly
restricted in first pass myocardial perfusion MRI.

Most of the current methods rely on fast imaging methods to freeze car-
diac/respiratory motion. Common approaches include fast-scan acquisition
[2, 3], parallel imaging [4, 5], and their combination with non-Cartesian tra-
jectories [3, 6]. Non-Cartesian trajectories are preferred in this context due to
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their superior time efficiency, and robustness to motion artifacts in compari-
son to Cartesian trajectories, as demonstrated by their early use in several real
time studies including imaging the vocal tract during speech production [7, 8],
flow imaging [9, 10], and cardiac functional imaging [11, 12]. Despite these ad-
vances, the quest for higher spatio-temporal resolutions in real time MRI, that
can match the image quality of gated & breath-held acquisition still remains.
The recovery of images from highly under-sampled k-space data by exploiting
the redundancy in the data has been an active research area; these methods
have the potential to overcome the above challenges in both real time and gated
acquisitions.

0.3 Recovery from under sampled measurements:
problem formulation

As described in previous sections, the reconstruction of the spatio-temporal ob-
ject from under-sampled k−t space measurements can greatly improve the trade-
offs between resolution and coverage in DMRI. We denote the spatio-temporal
signal as γ(r, t), where r = (x, y, z) is the spatial location and t denotes time,
and the discretized version is expressed by the N -dimensional vectors:

qi = [γ(ri, t0), γ(ri, t1), .., γ(ri, tN−1)]T ; i = 0, ..,M − 1;

where M , and N are respectively the total number of voxels per time frame,
and the total number of time frames.

The DMRI measurements corresponding to the noisy samples of the signal
in k − t space can be expressed as:

b(kr, ti) =

∫

r

γ(r, ti) exp
(
−jkTr r

)
dr + n(kr, ti); (1)

Here, (kr, ti) indicates the ith sampling location in the kr − t space, and n
denotes additive noise in the kr − t space.

An acquisition with multiple coil elements modifies Eq.(1) to,

bl(kr, ti) =

∫

r

cl(r, ti)γ(r, ti) exp
(
−jkTr r

)
dr + n(kr, ti); l = 1, 2, ...L; (2)

where cl(r, ti) denotes coil sensitivity profiles dependent both on space and time.
The expression in Eq.(2) can be rewritten in the vector form as

b = A(γ) + n; (3)

where, the operator A models for the coil sensitivity encoding as well as Fourier
encoding on a specified sampling trajectory (eg. Cartesian, or non-Cartesian).
The goal of accelerated DMRI is to recover the spatio-temporal signal (γ) from
the under sampled k − t measurements (b).

4



Type of 
temporal 

basis 
functions

Number of 
temporal 

basis 
functions

Are model 
coefficients 

sparse?

Requirement 
of Low 

resolution 
training data

k-t sampling 
requirements

Reconstruc 
tion

Linear models!
Ex: DIME, UNFOLD,   

k-t BLAST
Exponential Few < N No Yes Coherent Linear

Blind linear models!
Ex: PSF, k-t PCA, IRPF, 

k-t SLR
Learnt Few < N No

Yes 
!
!
!

Coherent 
!
!
!

Linear 
!
!
!

Compressed Sensing!
Ex: k-t FOCUSS, k-t 

SPARSE
Pre-

determined

Many; 
from an 

Over-complete 
dictionary

Yes No Incoherent Non-linear

Blind Compressed 
Sensing! Learnt

Many; 
from an 

Over-complete 
dictionary

Yes No Incoherent Non-linear

(When posed as low rank matrix recovery)
Incoherent Non-linearNo

�(x, t) =

RX

i=1

ui(x)| {z }
model coe↵s.

vi(t)|{z}
temporal bases

;

Global signal model

Figure 2: Several spatio-temporal models in DMRI can be interpreted as
variants of the general partial separability model (PS), where a single global
model is used to model the voxel time profiles (Eq.(4)).

0.4 Accelerated DMRI using linear models and
compressed sensing

Several spatio-temporal models that utilize a single global signal model to rep-
resent the voxel time profiles γ(r, t) can be interpreted by the general partial
separability (PS) model proposed by Liang et. al [13]. The PS model represents
the dynamic signal, γ(r, t) as:

γ(r, t) =

R∑

i=1

γi(r, t) =

R∑

i=1

ui(r)vi(t); (4)

where R denotes the total number of basis functions (or the model order),
and ui denotes the model coefficients. The above decomposition γi(r, t) are
separable functions of r, and t; ie they can be factored as a product of the
spatial model coefficients ui(r) and the temporal basis functions vi(t).

As depicted in Fig.(2), several spatio-temporal model based DMRI schemes
have evolved based on the choices in Eq.(4) including the type, and number of
temporal basis functions, constraints on the model coefficients, use of low reso-
lution training data, type of k − t sampling, and the reconstruction algorithm.
In the sections to follow, we will discuss the categories highlighted in Fig.(2) .

0.4.1 Linear models

To the best of our knowledge, the first adaptive DMRI linear model was proposed
by Liang et.al, which was termed as dynamic imaging by model estimation
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Figure 3: Demonstration of aliasing with coherent and incoherent k−t sampling
of a cardiac cine dataset: The spatial-spectral (x−f) profile of the fully sampled
cardiac cine dataset has very few non-zero components, and depicts a compact
support in the x − f space. Regular (coherent) k − t under sampling results
in coherent overlaps of the x − f signal (b); the linear models decouples these
coherent artifacts with prior knowledge of the spatial-spectral support from low
resolution training data, as noted by full sampling of the low spatial frequencies
in (b) . Incoherent k-t sampling (c) is employed by non-linear models such as
compressed sensing. Note the aliasing in the x − f space is now incoherent
and appears as noise, which are denoised by an iterative CS algorithm, which
enforces sparsity in the x − f space subject to consistency with the acquired
data.
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(DIME) [14]. DIME focusses on the recovery of a periodic signal γ as a linear
combination of few exponential temporal basis functions:

γ(r, t) =

R∑

i=1

ui(r)ej2πfit;R < N (5)

The frequencies fi in the above periodic signal can be determined by using a
low spatial but high temporal resolution DMRI dataset; these Fourier samples
are often termed as navigators or training data. The navigators can either be
estimated by a short training scan before the actual acquisition, or be inter-
leaved with the actual acquisition (see Fig.(3)). If γ is periodic in time (e.g.
cine imaging), the frequencies can be assumed to be multiples of the fundamen-
tal frequency (cardiac rate). If the temporal frequencies are known apriori, the
coefficients ui(r) can be determined even from under-sampled k − t measure-
ments.

In a second step, ui is determined in a least square sense by fitting the
acquired k − t data (b) to the model in Eq.(5):

min
ui(r)

∥∥∥∥∥A
(

R∑

i=1

ui(r)ej2πfit

)
− b

∥∥∥∥∥

2

2

; (6)

The above idea was made rigorous by in a series of developments by Bressler
et.al [15–19], who reformulated the problem as the design of a lattice sampling
pattern to minimize aliasing. Once a sampling scheme that does not result in
aliasing is identified, Eq.(6) reduces to a simple Fourier domain filtering problem.
This approach is related to spatial-spectral support constrained reconstruction
schemes such as UNFOLD [20, 21], and k-t BLAST [22]. All of these methods
design of specialized coherent k − t sampling patterns such that there are few
signal overlaps (aliases) in the spatial-spectral space or popularly known as the
x− f space. (also see Fig.(3)).

While the above methods are powerful, the periodic nature of the model
and the assumption of stationarity restricts its use in many DMRI applications
with complex spatio-temporal patterns. For example, any deviations in cardiac
rate/breath-holding location between the training and the actual acquisitions
will result in model mis-match and hence compromised performance. In addi-
tion, it requires specialized sequences with appropriate navigators and ability
to change the sampling patterns on the fly depending on the cardiac rate. To
address this, several researchers have instead proposed to acquire the data us-
ing incoherent sampling pattens and use compressed sensing assuming Fourier
dictionaries.

0.4.2 Compressed sensing

Compressed sensing (CS) methods have shown promise to accelerate DMRI
[23–28]. CS under the synthesis basis representation can be viewed as modifying
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the DMRI global model as:

γ(x, t) =

R∑

i=1

ui(r)︸ ︷︷ ︸
sparse

vi(t)︸︷︷︸
Pre−determined dictionary

;R ≥ N ; (7)

where the choice of basis functions are determined a-priori. Unlike linear models,
these basis functions vi(t) can belong to a set of basis or an over-complete dic-
tionary (e.g. wavelet frames). For example, in applications with quasi-periodic
spatio-temporal dynamics (e.g. breath held cardiac cine imaging), the dictionary
can be chosen as exponentials with all possible temporal frequency components:

γ(r, t) =
R∑

i=1

ui(r)︸ ︷︷ ︸
sparse

ej2πfit;R > N, (8)

where R is the size of the Fourier dictionary.
CS assumes that the model coefficients ui(r) are assumed to be sparse and

estimate them from the measured k−t space data by solving the `1 optimization
scheme:

{ui(r)} = arg min
ui(r)
‖A(γ)− b‖22 + λ

R∑

i=1

‖ui(r)‖1. (9)

Here, γ is specified by Eq.(8) and the `1 norm of the coefficient image ui(r) is
the sum of absolute values of the pixels:

‖ui(r)‖1 =
∑

r

|ui(r)|. (10)

Here, λ is a regularizing parameter that controls the trade-off between data con-
sistency and the sparsity constraint. The advantage of CS over spatial-spectral
support based methods (linear models) is that it does not require training data
to estimate the support. It uses incoherent k − t sampling that results in in-
coherent alias artifacts. The solution of Eq.(9) will provide sparse coefficients,
which implies that only the basis functions vi(t) corresponding to the non-zero
coefficients ui(r) are active at each voxel. In other words, unlike the two step
linear models, CS jointly estimates the exponential basis functions, and the
associated model coefficients. In addition, the set of exponentials that are ac-
tive at different voxels could be different. For example, one set of exponentials
would be active on the cardiac regions where the motion is at the cardiac rate,
while another set of exponentials could be chosen on the liver regions where the
motion patterns are different.

An alternative to synthesis formulation specified by Eq.(9) is to use an anal-
ysis formulation:

γ(r, t) = arg min
γ
‖A(γ)− b‖22 + λ‖ψ(γ)‖1; (11)
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where ψ is an appropriate sparsity inducing operator. For example, ψ can be
chosen as the Fourier transform [23,26], spatio-temporal wavelet [29], or spatio-
temporal finite difference operator [30].

The CS approach eliminates the need for training scans and customized k−t
sampling as required by linear models, described in the earlier subsection. How-
ever, the performance of CS is heavily dependent on the specific dictionary or
sparsifying operator. For example, Fourier dictionaries may be ideally suited
for breath-held cine applications due to the pseudo-periodicity of cardiac mo-
tion. However, the motion/contrast variations are not periodic in several other
applications; the use of Fourier dictionaries may be sub-optimal in these ap-
plications. Specifically, many transform coefficients are required to accurately
represent complex spatio-temporal patterns in applications such as free breath-
ing cardiac perfusion MRI (see how the motion and contrast dynamics disturbs
the x − f sparse representation in Fig.(5)). This limits the maximum achiev-
able acceleration rate, which prompted researchers to investigate data adaptive
representations which are discussed in the next sections.

0.5 Blind models for dynamic MRI

In this section, we will describe adaptive models that learns the representation
from the data itself. Since the representation is learned and not pre-determined
as the linear and compressed sensing models used in the previous sections, we
term them as blind models.

0.5.1 Blind linear models

Blind linear models can be thought of as a generalization of the adaptive lin-
ear model (DIME) to non-periodic dynamic datasets; instead of assuming the
temporal basis functions to be periodic exponentials, they are assumed to be
arbitrary functions. The representation of the signal as a linear combination
of a few arbitrary basis functions implies considerable correlations between the
temporal profiles of the dataset. Liang et. al., proposed to re-arrange the
spatio-temporal signal γ(r, t) in a Casorati matrix form to exploit the correla-
tions within the data [13]:

Γ =




γ (r1, t1) . . . γ (r1, tN )
...

γ (rM , t1) . . . γ (rM , tN )


 (12)

The rows of Γ correspond to the voxels, while the columns represent the tempo-
ral samples. The rows of this M ×N matrix are often linearly dependent (also
see Fig.(4)). Hence, the rank of Γ, is given by R << min (M,N). An arbitrary
M ×N matrix of rank R can be decomposed as

Γ = U︸︷︷︸
M×R

Σ︸︷︷︸
R×R

VH
︸︷︷︸
R×N

. (13)
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Figure 4: Low rank structure in DMRI data: The blind linear models exploit
similarities amongst the voxel time profiles in DMRI data, as depicted in the
numerical phantom example of a cardiac perfusion MRI dataset in (a). As shown
in (b), the data can be rearranged as a Casorati matrix, by row/or column wise
stacking of voxels from every time frame of the DMRI series. A PCA/SVD/KLT
of the resultant matrix reveals the low rank structure of the data, where the
singular values of the dataset exhibit a rapid decay (c).

10



x-t x-f x-KLT singular valuesx-y

Figure 5: Data representation in different transform domains: A numerical
cardiac phantom is considered to mimic breath held cine data in the top row,
breath held perfusion data in the middle row, and free breathing perfusion data
in the bottom row. The first column shows the spatial image (x-y) for a specific
time frame; the second column depicts the image time profile (x-t) through the
arrows in the first column. The x-f and x-KLT representations are shown in the
third and fourth columns. The significant singular values in the KLT model are
shown in the fifth column. Note that the x-f space is highly sparse for breatheld
cine applications, while the sparsity is disturbed significantly in perfusion and
breathing applications. In contrast, as seen in the fourth and fifth columns, all
the datasets are compact in their x-KLT spaces.
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This decomposition implies that the spatio-temporal signal γ(r, t) can be
partially separable upto Rth order as [13,31–33]:

γ(r, t) =

R−1∑

i=0

ui(r) vi(t)︸︷︷︸
from PCA/KLT/SVD

; (14)

The temporal basis functions vi(t) are the columns of the matrix V in Eq.(13),
while the spatial weights ui(r) are the row vectors of UΣ (often termed as spatial
weights). Since the basis functions are derived from the data itself, these models
can be termed as blind linear models. The data-driven capabilities of this model
offers a much more compact representation in comparison to the linear models
that use spectral basis functions; the representation of this model in different
DMRI applications is illustrated in Fig.(5).

The methods of partially separable functions (PSF), k-t PCA, k-t FOCUSS
proposed the following two-step strategy to reconstruct the spatio-temporal sig-
nal [13,23,31–33].

1. Estimate the temporal basis functions vi(t); i = 0, .., R−1 using PCA/KLT/SVD
of the training image time-series. The training data consists of dynamic
image data, acquired with low-spatial resolution and high temporal sam-
pling rate; it is obtained as the IFFT of the central phase encodes, acquired
at the Nyquist temporal sampling rate.

2. Use the linear model specified by Eq.(14) to recover the DMRI data from
sub-Nyquist sampled measurements, using the temporal basis functions
vi(t). This involves the estimation of the spatial weight images ui(x); i =
0, .., r− 1 from the under-sampled measurements in a least squares sense:

min
ui(r)

∥∥∥∥∥∥∥
A




R∑

i=1

ui(r) vi(t)︸︷︷︸
from PCA/KLT/SVD


− b

∥∥∥∥∥∥∥

2

2

; (15)

Since R << N , this approach provides a significant reduction in the num-
ber of unknowns and hence the number of measurements.

The blind linear models (BLM) implicitly assume that the principal basis
functions estimated from the low-resolution data closely approximate the actual
PCA/SVD/KLT basis functions. We have derived theoretical conditions for the
equivalence of the right subspace estimated from the navigator data to the one
estimated from the full data [34]. The results show that the equivalence can
break down when the number of phase encodes in the training data are too
few, resulting in the loss of subtle details and reconstructions with inaccurate
temporal dynamics. While the acquisition of more training data can minimize
these problems, this comes at the expense of the number of high-frequency en-
codes that can be acquired at a specified acceleration rate; this can often result
in aliasing artifacts [35]. Sufficient conditions for the subspace aware recovery
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Figure 6: Recovery of a low rank matrix from incoherently under sampled mea-
surements can be posed as a convex rank minimization problem: Recent the-
oretical results [36] [37] indicate the matrix can be perfectly recovered with a
high probability if (a) random ensemble measurement matrix is employed, and
(b) if the number of measurements are approximately two to three times the
degrees of freedom of the low rank matrix. Here ‖‖∗ indicates the nuclear norm
of the matrix, defined as the sum of singular values of the matrix.

of the signal γ (recover of ui; i = 1, .., R) from under sampled measurements
are also available [34]; the theoretical results enable the determination of ap-
propriate sampling patterns for each application (e.g. cine and perfusion MRI).
The bottom line is that the performance of the two-step schemes requires a fine
balance between the amount of training data and the number of high-frequency
encodes. Single step low-rank recovery provides an alternate approach that will
minimize these tradeoffs.

0.5.2 Low rank matrix recovery

The blind linear models described previously assumes the dynamic data to lie
in a low dimensional sub-space. This assumption leads to the Casorati matrix Γ
being low rank (also see Fig.(4)). The recovery of a low-rank matrix from few of
its incoherent measurements has been studied extensively in the fields of applied
mathematics and signal processing. The recent theoretical results indicate that
a matrix Γ ∈ Rm×n of rank R;R ≤ min(M,N) can be perfectly recovered from
its measurements b = A (Γ) by solving the constrained optimization problem
[36,37] (also see Fig.(6)):

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 such that rank (Γ) ≤ R. (16)
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•  The MIT logo is both low rank and sparse

•  We recover the logo from sparsely measured samples
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Figure 7: Demonstration of recovery rates using different norms: The matrix
with the MIT logo has a low rank structure (rank of five), as well as a sparse
structure (sparse gradients of the rows and columns). This matrix is recovered
from different random ensemble measurement matrices, which correspond to
different rates of under sampling. The combined use of low rank and sparse
priors yield better recovery rates over using the low rank or the sparse prior
individually. In addition, the performance of the low rank prior can be improved
by using the non-Convex Schatten p-norm (p = 0.5) over the convex nuclear
norm (p = 1).

The above formulation can be applied to recovering DMRI data from undersam-
pled k− t measurements subject to the constraint that Γ is low rank. Reformu-
lating the above constrained optimization problem using Lagrange’s multipliers,
one can obtain:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ rank (Γ) . (17)

Since the rank penalty is non-convex, it is often replaced with the nuclear norm,
which is the closest convex relaxation. The nuclear norm of an R-rank matrix
Γ = UΣV∗, denoted by ‖Γ‖∗, is the sum of the singular values of Γ (‖Γ‖∗ =∑
i(Σi,i)). With this relaxation, the recovery of the matrix is simplified as [37]:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ ‖Γ‖∗; (18)

The above optimization has benefits over blind linear models in that it jointly
estimates the spatial weights and the temporal basis functions, there by address-
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ing the practical limitation of the tradeoffs amongst sampling in the training
and data acquisition phases.

Matrix recovery schemes using non-convex optimization have also been pro-
posed which demonstrate improved recovery rates over nuclear norm minimiza-
tion. One approach is the replacement of the convex nuclear norm in Eq.(18)
by the non-convex on-convex Schatten p-norm (p < 1) [35]:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ




min(M,N)∑

i=1

(Σi,i)
p




︸ ︷︷ ︸
Schatten p norm

; 0 < p < 1 (19)

A greedy incremented rank power factorization (IRPF) approach has also
been proposed [38, 39], which iterates between solving for the model coefficient
matrix ΦM×R = UM×RΣR×R and the temporal basis functions matrix VR×N :

min
ΦM×R

‖A(ΦV)− b‖22; (20)

min
VR×N

‖A(ΦV)− b‖22; (21)

The optimization with these non-convex methods differ from the nuclear
norm minimization schemes; they rely heavily on using continuation strategies
to avoid convergence to undesirable local minima. For example, the IRPF algo-
rithm iterates between Eq.(20), and Eq.(21) by starting with a rank R = 1, and
gradually increment the rank in steps of one, until the desired rank, R < N is
achieved. In other words, they solve for simpler subproblems during the initial
iterations, and gradually update the complexity of the problem as the itera-
tions proceed. We refer the interested reader to [38] [40] for details of these
algorithms.

The low rank and the two-step PSF/k − t PCA methods assume the data
to be globally low-rank, which implies that the voxel profiles at all voxels have
the same representation. Since the voxel profiles of different anatomical regions
may be distinct (e.g. motion patterns of the heart and the lung may be very
different), the above model may be too restrictive. Specifically, a high model or-
der (high rank) may be needed to represent all regions accurately. Region based
priors in DMRI have been recently explored by several researchers [41–46]. In
contrast to global models, these schemes utilize different model representation
for different localized regions of the spatio-temporal object. The locally low
rank model exploits rank deficiency of small spatial patches in the DMRI time
series as opposed to considering rank deficiency of the whole Casorati matrix
as done the blind linear model. Rank deficiency of matrices formed from voxel
time profiles belonging to anatomically distinct regions have been proposed in
the method of compartment based k − t PCA [43]. This scheme segments re-
gional compartments such as left ventricle, myocardium, and right ventricle in
myocardial perfusion MRI, and promotes rank-deficiency independently to each
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of these compartments. [46] further improved this approach by considering rank
deficiencies on elements which are not only spatially localized, but also tempo-
rally localized; which was motivated by temporal dynamics in contrast enhanced
MRI, where image frames during initial contrast passage varies significantly in
contrast from the later frames.

0.5.3 Joint Low rank and Sparsity regularized recovery
(k-t SLR)

The performance of low rank constrained DMRI methods can be further im-
proved by utilizing additional sparsity based priors (also see Fig.(7), where the
performance recovery a matrix which is perfectly low rank and sparse is demon-
strated with different priors). For instance, the method of k − t SLR utilizes
a spatio-temporal total variation prior in addition to the Schatten p-norm low
rank prior as [35]:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ1

min(M,N)∑
i=1

(Σi,i)
p


︸ ︷︷ ︸

Schatten p norm

+λ2

∥∥∥√|∇x(Γ)|2 + |∇y(Γ)|2 + α|∇t(Γ)|2
∥∥∥
1︸ ︷︷ ︸

spatio−temporal total variation

;

(22)

where λ1, λ2, α are regularization parameters.
k−t SLR utilizes variable splitting techniques to decouple the above problem

to simpler subproblems of (a) singular value shrinkage, (b) sparsity shrinkage,
(c) quadratic reconstruction. It iterates between these problems using a contin-
uation strategy to avoid convergence to local minima. Other extensions such as
alternating direction method of multiplies, and Bregman multipliers have been
proposed. We refer the reader to [47,48] for details of these algorithms. Fig.(8)
demonstrates the image quality with k − t SLR in comparison with CS that
utilize temporal Fourier basis on a free breathing myocardial perfusion dataset
with shallow breathing. As seen in this figure, k − t SLR is shown to provide
superior depiction of subtle perfusion defects, and is more robust to motion ar-
tifacts due to the use of data-driven basis, and complementary benefits provided
by the sparsity priors.

The two step recovery scheme of the blind linear model has also been im-
proved by utilizing additional sparsity constraints [49]. These improve the re-
covery of the ui(r) problem in Eq.(15) as:

u∗i (r) = arg min
ui(r)

∥∥∥∥∥∥∥
A




R∑

i=1

ui(r) vi(t)︸︷︷︸
from PCA/KLT/SVD


− b

∥∥∥∥∥∥∥

2

2

+λ

∥∥∥∥∥ψ
(

R∑

i=1

ui(r)vi(t)

)∥∥∥∥∥
1︸ ︷︷ ︸

sparsity penalty

;

(23)
where the choice of ψ in Eq.(23) is motivated by the DMRI application. For
instance, in dynamic imaging of speech production, the optimization in Eq.(23)
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Figure 8: Comparison of k−t SLR with CS with x−f sparsity on a dataset of a
patient with myocardial ischemia. The first row corresponds to the close to fully
sampled reference data with 72 radial rays per frame. Retrospective sampling
of choosing 21 radial rays/frame from the acquired data was considered. These
rays were chosen such that the spacing between successive rays approximated
the golden ratio. The x−y, x− t, region of interest (marked by green in the top
left image) myocardial perfusion curve and the left ventricle parametric map of
the slopes of the perfusion curves are shown in the column. In the perfusion
maps in (a), regions of reduced perfusion uptake are depicted in the inferior
myocardium wall (as pointed by the white arrows). It is observed that the
k − t SLR reconstructions depict these regions efficiently in comparison to CS
methods (see (b),(c)); the latter in particular is sensitive to motion and results
in motion blur artifacts; this is depicted in the reconstructions as well (see the
yellow arrows).
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Figure 9: Phase transition recovery rate experiment: Ground truth DMRI
datasets were created with different sparsity levels under known dictionaries.
The datasets were under sampled using different k − t radial measurement ma-
trices. The performance recovery of three algorithms were studied by plotting
the root mean square error of the reconstructions at different sparsity levels:
(a) CS with vi(t) to be exponential basis functions, (b) Blind CS with unknown
vi(t), but estimated from the under sampled data (i.e, solving Eq. 25), (c)
Dictionary aware setting (i.e, CS with the ground truth known). As expected,
the number of measurements required to recover the datasets increases with the
sparsity level. The BCS scheme outperforms the CS scheme considerably. Fur-
thermore, due to a small over head in estimating the dictionary, the dictionary
unaware scheme (BCS) was only marginally worse than the dictionary aware
scheme.

with ψ being the temporal Fourier transform demonstrated excellent accelera-
tion capabilities translating to prospective acquisition of dynamic speech images
at 100 frames per second [50].

0.5.4 Blind Compressed Sensing

The blind compressed sensing (BCS) model [51] share similarities with CS and
blind linear models. Similar to CS, the voxel intensity profiles are modeled as a
sparse linear combination of basis functions in a dictionary. However, instead of
assuming a fixed dictionary, BCS estimates the dictionary from the undersam-
pled measurements itself, leading it to offer a data-driven representation. BCS
contrasts with blind linear models in terms of the sparsity assumption on the
coefficients, and the increased number of basis functions in the dictionary (which
are not necessarily orthogonal); which together provides a richer representation.
The global signal model for BCS can therefore be expressed as:

γ(x, t) =

R∑

i=1

ui(r)︸ ︷︷ ︸
Sparse coefficients

vi(t)︸︷︷︸
Learned basis

;R ≥ N ; (24)

The differences of BCS and blind linear models can also be highlighted by
investigating the degrees of freedom in these models. The number of degrees
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of freedom (DOF) of the general global model approximates to MR + RN .
In blind linear models, since R << N , the DOF is approximately MR, or
proportional to the rank R. In the BCS model, the DOF is approximately
MK +RN , where K is the average sparsity of the representation. However, in
DMRI, since M >> N the DOF is dominated by the average sparsity k and
not the dictionary size R, it reduces to MK. In other words, the DOF in BCS
is proportional to the average sparsity level K, or the average number of basis
functions active at a voxel, which in DMRI is often less than the rank R in a
blind linear model representation. This implies that the BCS model is capable
to provide an improved trade-off between accuracy and achievable acceleration
in comparison to the blind linear model.

The main utility of using BCS over CS is that basis functions in BCS are
more representative of the temporal dynamics at hand and adapt to the data;
they provide sparser representation compared to off the shelf dictionary bases
(eg: Fourier exponential bases) as used in CS. Further in DMRI since the number
of voxels per frame typically dominate the number of time frames, the overhead
in learning the basis functions is minimal. This is demonstrated in the example
phase transition plot in Fig.(9) of CS with temporal Fourier bases v/s BCS with
learned bases from undersampled data v/s a setting where the ideal dictionary
bases are known. Since the coefficients ui(r) are sparse, the basis functions that
are active at each voxel are different. Thus, this approach can be thought of as a
locally low-rank scheme, where the representation is allowed to vary depending
on the pixel.

The reconstruction in BCS involves the joint estimation of ui(r), and vi(t)
in Eq.(24) from under sampled k − t measurements (b) with a sparsity con-
straint on ui(r), and a dictionary constraint on vi(t), which is required to avoid
scale ambiguity in the product of ui(x)vi(t). Choices of sparsity and dictionary
constraints can range from utilizing the convex l1 norm, or the non-convex l0,
lp; (0 < p < 1) norms on ui(x), and unit column norm or Frobenius norm
constraints on the dictionary. A typical BCS reconstruction with l1 coefficient
sparsity, and unit column norm dictionary constraint can be formulated as the
following constrained optimization problem:

{ui(r), vi(t)} = arg min
ui(r),vi(t)

∥∥∥∥∥A
(

R∑

i=1

ui(r)vi(t)

)
− b

∥∥∥∥∥

2

2

+ λ ‖ui(r)‖1 ;

such that ‖vi(t)‖22 < 1; i = 1, .., R

(25)

A straightforward optimization algorithm to solve Eq.(25) involves alternating
between updating ui(x), and vi(t). Faster approaches that involve continuation
strategies have also been proposed [51].

Fig.(10) shows a comparison of under sampled reconstruction with the low
rank model using Schatten p-norm regularization; p < 1), the CS model with
temporal Fourier sparsity, and the BCS model. As depicted in this figure, the
BCS model can offer better temporal fidelity, in particular the richer data-driven
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Figure 10: Performance evaluation of undersampled reconstruction of a dynamic
lung MRI dataset using the blind compressed sensing (BCS), CS and low rank
schemes: It can be seen that the BCS scheme consistently produce the least
mean square error at all undersampling factors. The CS, and low rank schemes
depict loss in spatial features, and compromises due to motion blurring (see the
yellow arrows in rows 3,4). In contrast, the BCS scheme was found to be more
robust to motion blur, and provided superior spatio-temporal fidelity.
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basis adapts to learning the spatio-temporal dynamics much efficiently than the
blind linear model, and the CS models.

Other flavors of BCS with dictionaries containing atoms of three-dimensional
spatio-temporal cubes [52, 53] have been proposed. These schemes have shown
considerable promise over conventional CS schemes in the cardiac cine MRI
application.

0.6 Deformation compensated compressed sens-
ing

All of the above methods model the voxel profiles in the dynamic dataset as a
linear combination of basis functions. The performance of all of these schemes
degrade with extensive motion in the datasets, which are present in free breath-
ing and ungated acquisitions. Specifically, different anatomical regions may
pass through each voxel due to respiratory/cardiac motion; a high model order
is needed to represent the signal at hand, which results in lower acceleration.
Methods based on compensating the inter-frame object and/or subject motion
have been used in several DMRI reconstruction methods [54–57]. For instance,
the k-t FOCUSS with motion estimation and compensation (ME/MC) [55]
method models the dynamic images as the deformation of fully sampled refer-
ence frames. The residuals are then reconstructed from under-sampled k-space
data using k − t FOCUSS.

An explicit motion compensated recovery scheme, which jointly estimates
the deformation parameters and the motion compensated dataset was intro-
duced [57, 58]. The main advantage of this scheme is its ability to impose
arbitrary compactness priors on the motion compensated dataset (e.g sparsity,
low-rankedness), thus making it applicable in a range of applications includ-
ing ungated free breathing myocardial perfusion MRI and free breathing CINE.
This deformation compensated compressed sensing (DC-CS) scheme, jointly es-
timates the deformation and dynamic images subject to arbitrary compactness
priors on the deformation corrected dynamic dataset:

min
γ(r,t),θ(r,t)

‖A(γ)− b‖22 + λ Φ (Tθ · γ)︸ ︷︷ ︸
compactness prior

. (26)

Here, Tθ denotes the deformation operator, parametrized by θ. The motion
field can be modeled as rigid body motion or smooth deformations. Φ specifies
arbitrary choices of compactness priors, such as the spatial-spectral sparsity
prior Φ(u) = ‖Ft‖`1 , or the the temporal finite difference sparsity prior Φ(u) =
‖∇t‖`1 . Ft and ∇t are the temporal Fourier transform and temporal gradient
operator, respectively. Low rank priors can be defined as Φ(γ) = ‖Γ‖∗, the
nuclear norm of the Casorati matrix Γ associated with γ(x, t) [13, 35]. The
presence of a global cost function enables the use of continuation strategies to
minimize local minima effects.
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The optimization in Eq. (11) is solved using a variable splitting optimiza-
tion framework, where the problem is reduced to iterations between simpler
problems of shrinkage based denoising, deformable registration, and quadratic
optimization. The shrinkage based denoising subproblem results in a reference
time image series containing only dynamics due to contrast changes without
the motion. The specific form of the reference image time series enables the
scheme to decouple the effects of smooth perfusion induced contrast changes
and the more rapid changes resulting from inter-frame motion, which makes
this approach applicable to dynamic contrast enhanced MRI applications while
using simpler similarity measure metrics for registration. Fig.(11) demonstrates
the application of the DC-CS scheme using the spatial-spectral sparsity prior
and the temporal total variation prior in reconstruction a free breathing my-
ocardial perfusion MRI dataset from approximately seven fold under sampled
measurements.

The DC-CS approach has similarities to recent motion compensated schemes
such as motion adaptive spatio-temporal regularization (MASTER) [59]. This
scheme focusses on breath-held cardiac cine applications and alternates between
the estimation of cardiac motion by using an optical flow or phase based mo-
tion estimation and reconstruction using total variation priors on the motion
compensated dataset. Other motion compensated schemes customized to free
breathing cardiac cine and delayed enhancement MRI have also been intro-
duced [54, 60–63]. In applications involving changes in contrast along time (eg.
perfusion MRI, and parametric MRI), customized ME/MC schemes that model
the contrast variations using a parametric perfusion model have been developed.
These schemes derive a dynamic reference image time series which contain only
perfusion dynamics in the absence of motion [64], and [65]. The deformation
due to motion was modeled using a rigid transformation model in [64], and
a more accurate non-rigid model in [65]. Some approaches rely on the use of
mutual information similarity measure during registration which is robust to
the presence of contrast changes [56]. The scheme in [56] jointly estimates the
deformation (using a mutual information similarity measure), and the dynamic
images, while enforcing regional rank sparsity on the dynamic images.

0.7 Dynamic MRI using manifold models

The manifold structure of data has been widely used for the visualization of
the structure of complex datasets. Non-linear dimensionality reduction or man-
ifold embedding methods assume that the data are points on a low dimensional
manifold (smooth surface) in higher dimensional space. If the manifold is of low-
enough dimensionality, the data can be compactly visualized in low-dimensional
space. For example, if the points are on a curve in 3-D, one can associate each
point to a point on a straight line; non-linear dimensionality reduction methods
such as ISO-MAP generates a nonlinear mapping between each point on the 3-D
curve to a point on a line [66–68]. Emerging research shows that the manifold
structure of dynamic MRI data can be used to regularize the recovery of static
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Figure 11: Recovery of a free breathing myocardial perfusion MRI data set
from seven fold under sampled data using the deformation corrected compressed
sensing algorithm. The joint estimation of the inter-frame motion along with
the reconstruction greatly improves the fidelity to motion artifacts. Note the
motion blurring and artifacts in CS reconstructions, in comparison to the motion
compensated CS reconstructions (see arrows).
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and dynamic MRI data from under sampled measurements.

0.7.1 Image manifold regularization: application to real
time cardiac MRI

Emerging research shows that the manifold structure of dynamic MRI data
can be used to regularize the recovery from under sampled data. In many
applications (e.g. free breathing and ungated CINE), the images in the dataset
can be assumed to non-linear functions of two parameters: the cardiac phase
and respiratory phase. Images with similar cardiac and respiratory phase are
expected to be similar; this property is used in gating methods. Hence, the
images in these applications can be safely assumed to be points on a smooth
low-dimensional manifold with high ambient dimension (the ambient dimension
is the total number of pixels in each image).

The manifold structure of dynamic MRI data has been used by Usman et al,
who estimated cardiac and respiratory gating signals from free breathing and
ungated cine MRI data using manifold embedding. Specifically, they perform
a preliminary high temporal resolution recovery of the golden angle radial ac-
quisition using iterative SENSE. By performing a localized manifold learning
strategy on regions around the heart, they obtain the cardiac gating signal.
Once the cardiac gating signal is obtained, they bin the data from the sysolic
phases and perform a low temporal resolution reconstruction, followed by man-
ifold learning to identify the respiratory signal. Once both gating signals are
obtained, they data from similar cardiac gates are binned together to perform
the final k-t sparse SENSE reconstruction.

An alternate manifold regularization strategy that relies on a navigated
golden angle radial acquisition was introduced in [69, 70] for the reconstruc-
tion of free breathing and ungated cine MRI data. The acquisition scheme
collects a few (2-4) radial k-space navigator k-space lines from each frame γi,
while the remaining lines are acquired according to the classical golden angle
radial scheme: [

yi
zi

]

︸ ︷︷ ︸
bi

=

[
Φ
Bi

]

︸ ︷︷ ︸
Ai

γi (27)

Here, Φ denotes the Fourier sampling operator corresponding to the navigator
lines, while Bi are the measurements corresponding to the remaining lines. The
recovery of the image frames is posed as the discretized Tikhonov regularized
reconstruction on the manifold:

{γ∗i } = arg min
γi

k∑

i=1

‖Ai γi − bi‖2F + λTr(Γ L ΓH) (28)

where Γ =
[
γ1 γ2 . . . γk

]
and Tr denotes the trace operator. Here, L is

the discretization of the Laplacian operator of the manifold. The matrix L is
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estimated from the common measurements yi as

Li,j =

{
e−
‖yi−yj‖2

σ2 if ‖yi − yj‖22 < 2σ
0 else

(29)

where σ is a parameter that is dependent on the maximum curvature on the
manifold. The comparisons of the manifold regularized recovery scheme with
low-rank and two-step PSF methods in Fig.(12) demonstrates the improved
performance of this scheme. The interested readers are referred to [69, 70] for
details.

Figure 12: Reconstructions of free breathing & ungated CINE data using different
algorithms: The rows correspond to reconstructions obtained using (a) Nuclear Norm
minimization (b) Two-step PSF recovery (c) PSF with spatial TV regularization (d)
Recovery using the manifold regularization specified by (28). The first five columns are
representative images from the time series (cropped to include only the myocardium),
while the last column shows the temporal intensity profile of the reconstructions along
a vertical line.

0.7.2 Patch manifold regularization: application to im-
plicit motion compensated dynamic MRI

The manifold structure of image patches has been widely used in image process-
ing for denoising. These non-local regularization/smoothing schemes denoise
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each patch in the image γ by expressing it as a weighted linear combination of
other patches that are similar to it in the same image [71]. The weights wx,y
between patches Px(γ) and Py(γ) centered at pixels x and y respectively are
estimated as

wx,y = e−
‖Px(γ)−Py(γ)‖2

σ2 (30)

One of the difficulties in applying the classical non-local regularization scheme
to MRI recovery from undersampled data had been the dependence of the cri-
terion on pre-specified weights; the use of the weights estimated from aliased
images often preserve the alias patterns rather than suppressing them. Some au-
thors have shown that alternating between the denoising and weight-estimation
step improves the quality of the images in deblurring applications [72], but of-
ten had limited success in heavily undersampled Fourier inversion problems.
This alternating scheme for NLM has been recently shown to be equivalent to a
majorize-minimize (MM) algorithm to optimize a regularized global cost func-
tion, where the regularization term is the sum of unweighted robust distances
between image patches [73,74]. The formulation as the optimization of a global
criterion enabled the use of efficient continuation strategies to overcome the lo-
cal minima problems. A fast iterative shrinkage algorithm was also introduced
to solve the resulting regularization functional [75].

This patch regularization scheme has been recently demonstrated in dynamic
MRI to obtain motion compensated recovery without explicit motion estima-
tion. Fig.(13) illustrates the idea of implicit motion compensation. Small spatial
patches are defined in an image frame, and similar patches are searched in a lo-
calized spatio-temporal neighborhood in subsequent time frames. Redundancies
amongst the similar patches are then exploited. The recovery of such schemes
can be posed as a regularized reconstruction scheme, where the non-local regu-
larization penalty is an unweighted sum of distances between image patch pairs
in the DMRI dataset:

γ∗ = arg min
γ(r,t)

‖A(γ)− b‖22 + λ
∑

r

∑

y∈N (r)

φ (Px(γ)− Py(γ)) ; (31)

where Px(γ) is an image patch centered at the voxel x, and N(x) indicates the
small search neighborhood around x; ψ denotes a distance metric that saturates
with distance to encourage smoothing between similar patches, while discourag-
ing the averaging of dissimilar patches (see Fig.(13) for example choices of the
φ metric).

This implicit motion compensated recovery scheme is a good alternative
to explicit ME-MC schemes described in the previous section. Specifically,
the ME-MC scheme involves solving highly nonlinear, non convex optimization
problems, making it susceptible to local minima solutions. Although heuris-
tic continuation schemes have been employed [56, 57], the convergence of these
schemes to a global solution is not guaranteed. The reconstruction time of
the explicit ME/MC schemes also are often prohibitive due to the expensive
motion estimation step. By contrast, the advantage of these implicit ME/MC
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(c) Undersampled free breathing ungated cardiac cine MRI reconstruction

(a) Searching of similar patches within a spatio-temporal neighborhood

(b) Various choices of distance metric,    �

Figure 13: Implicit motion compensated reconstruction using non-local regular-
ization: Similarity amongst small spatial patches within small spatio-temporal
neighborhoods are exploited. The penalty in non-local regularized recovery is
an unweighted sum of distances between patch pairs in the 3-D dataset. For a
specified image patch, the penalty term involves the distances between itself and
other patches in its cube shaped neighborhood. The robust distance metric is
capable of exploiting the redundancy between similar patches, while excluding
the dissimilar patches from averaging (different choices of this metric is shown in
(b)). In (c), this scheme is used to recover under sampled ungated free breathing
cardiac cine data, and its performance is compared against a spatio-temporal
total variation regularized scheme.

schemes are its largely reduced computational complexity in comparison to ex-
plicit ME/MC schemes. For instance, the scheme by [75] has the computational
complexity of a total variation regularized recovery scheme, but with greatly
improved spatio-temporal fidelity due to implicit motion compensation (also
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see Fig. 13).
Similar work in this area that capitalize on rank deficiency of the patches

along an implicitly searched motion trajectory has also been proposed in [76]
with good results. The implicit motion compensation offered by such manifold
priors are expected to considerably advance dynamic MRI.

0.8 Summary

As discussed in this chapter, a wide variety of adaptive reconstruction algo-
rithms have been proposed to improve the state of the art and minimize the
challenges in dynamic MR imaging. While these schemes have great potential
to improve DMRI imaging trade-offs, there exists a current gap in translation
of these techniques to the clinic. A challenge lies in quantifying the properties
(such as SNR, resolution, artifacts) of the nonlinear reconstructions. Several
of these reconstruction algorithms rely on multiple parameters; there exists a
challenge to automatically reconstruction datasets with minimal human inter-
vention of choosing these parameters. With the use of modern hardware support
such as graphical processing units, the reconstruction of several of these non-
linear algorithms have greatly improved, few of which obtain close to real time
reconstruction [77,78].

While this chapter has been focussed solely on MRI applications, the pro-
posed methods can also find applications in other dynamic applications includ-
ing low-dose cardiac CT and nuclear imaging modalities.
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