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ABSTRACT 

We develop a fully automated airway segmentation method 

to segment the vocal tract airway from surrounding soft 

tissue in speech MRI. We train a U-net architecture to learn 

the end to end mapping between a mid-sagittal image (at the 

input), and the manually segmented airway (at the output). 

We base our training on the open source University of 

Southern California’s (USC) speech morphology MRI 

database consisting of speakers producing a variety of 

sustained vowel and consonant sounds. Once trained, our 

model performs fast airway segmentations on unseen 
images at the order of 210 ms/slice on a modern CPU with 

12 cores. Using manual segmentation as a reference, we 

evaluate the performances of the proposed U-net airway 

segmentation, against existing seed-growing segmentation, 

and manual segmentation from a different user. We 

demonstrate improved DICE similarity with U-net 

compared to seed-growing, and minor differences in DICE 

similarity of U-net compared to manual segmentation from 

the second user. 

 

1. INTRODUCTION 

Magnetic resonance imaging of vocal tract shaping is 
emerging as a powerful tool to non-invasively assess speech 

production. Its utility is growing in both basic speech 

science and clinical applications. These include 

understanding phonetics, providing new insights into 

language production, modeling speech, assessing movement 

disorders, assessing speech, pre and post oral cancer 

treatment [1]–[3]. Several researchers have recently applied 

sparse sampling and constrained reconstruction schemes to 

significantly improve speech MRI. These include enabling 

rapid dynamic 2D MRI of free-running speech (eg. at frame 

rates of ~100 frames/sec [4]), rapid volumetric 3D scans of 
sustained speech (scan time of ~6 sec) [5] and dynamic 

volumetric 3D scans of free-running speech at ~20 

frames/sec [6].  

While high-speed MRI has dramatically improved 

the richness of speech MRI datasets, they have also 

introduced challenges with large scale segmentation, where 

manual segmentation would be timeconsuming, and not 

practical. Segmentation in speech MRI range from (a) 

segmenting the airway from the surrounding tissue, (b) 

segmenting the air-tissue interfaces or (c) segmenting the 

articulators themselves (eg. the tongue, velum, pharyngeal 
wall). Various segmentation methods have been proposed 

for these tasks. For instance, the classical seed growing 

algorithm has been applied to semi-automatically segment 

the airway in [7], and the tongue in [8]. A subjectspecific 

anatomical template-based approach was proposed in [9], 

where contours of moving air-tissue interfaces of various 

articulators were segmented. Recently, these contours have 

been segmented using automated network-driven 

segmentation tools (eg. [10], [11] ). 
In this paper, we develop an airway segmentation 

network based on the original U-net architecture[12]. We 

leverage speech MRI datasets from the publicly available 
University of Southern California’s (USC) speech MRI 

morphology database [13]. We manually annotate/segment 

the airway in mid-sagittal cross sections of speech MR 

images obtained from several speakers producing a variety 

of sustained vowel and consonant sounds. The U-net 

architecture is trained to learn the end to end mapping 

between the mid-sagittal image (at the input) and the 

segmented airway (at the output). Once trained, the model 

performs fast airway segmentations on unseen images at the 

order of 210ms/slice on a CPU with 12 cores. Using manual 

segmentation as the reference, we compare the 

performances of the proposed U-net airway segmentation 
against existing seed-growing based airway segmentation, 

and a second manual segmentation from a different user. We 

demonstrate U-net to provide considerably improved DICE 

similarity compared to seed-growing segmentation and has 

minor differences in DICE similarity when compared to 

manual segmentation from a second user.   

 

2. METHODS 

2.1 Speech MRI dataset specifications: 
We used the USC speech morphology database which 

contained volumetric scans of the airway during sustained 
production of vowel and consonant sounds[13]. Imaging 

was performed with a head coil, and the parameters were 

FOV: 20x20x10 cm3; resolution: 1.25mm3; flip angle: 5 

degrees; scan time: 6 sec; acceleration factor of 6. Images 

were reconstructed via a spatial total variation based 

constrained reconstruction. Here, we considered the 2D 

problem of segmenting the airway from the mid-sagittal 

section of these volumetric scans. A total of 100 images 

from 10 speakers were used in this study with a split of 75 

images for training; 5 images for validation; and 20 images 

for testing. Few images with significant total variation 
staircase blurring artifacts across the air-tissue boundary 



were omitted from the original database. We considered 

images where manual segmentation of the airway was 

feasible with a single connected mask having a diameter of 

atleast 2 pixels. This was done so that the network is robust 

to learning disconnected false-positive airway masks such as 
airspace behind the velum, airspace in the nose, dark pixels 

representing the teeth. With this selection criterion, the 

pruned database contained the following stimuli of “bit, bait, 

bet, bat, pot, but, bought, boat, boot, put, bird, abbot, afa, 

ava, atha, aha, ama, ana”, where the underlined text 

represents the sustained sounds. Figure 1 shows 

representative speech sounds across all the 10 speakers used 

in this study.  

 
2.2 Pre-processing: 

The reconstructed mid-sagittal images had a 

considerable smooth intensity variation across the FOV 

(largely due to sensitivity variation of the head coil elements 
across the large FOV). The images were corrected for this 

intensity bias by accounting for the smooth bias field, which 

was estimated via a low pass operation on the uncorrected 

image. The low pass filter employed a Gaussian filter with a 

kernel size of 50 pixels. The bias correction leads to noise 

amplification in low intensity regions. To account for this, 

we performed de-noising using a spatial total variation 

regularizer. The intensity corrected de-noised images were 

then cropped to zoom into a pre-defined region of interest 

containing the vocal tract airway and the neighboring 

articulators. Finally, the cropped images were resized to a 

size of 256 px × 256 px using the imresize command in 
MATLAB with default bi cubic interpolation.  

 

 

2.3 U-net architecture and training: 
We used the original U-net architecture[12] to learn the 

mapping of the pre-processed mid-sagittal image at the input 

and the airway segmentation (represented as a binary mask) 

at the output (see Figure 2). The architecture was 
implemented in Keras with TensorFlow backend. All our 

experiments were performed on an Intel Core-i7 8700CK, 

3.70 GHz 12 core CPU machine. The number of base 

feature maps per convolutional layer in the first resolution 

scale was 64, which was doubled and halved in the next 

resolution scale in the contracting and expanding U-net 

paths respectively. 
We used the following binary cross-entropy loss 

function to train the U-net model: 

 
Where yref(i) and 𝑦̂(𝑖) are the intensities of the reference 

and the predicted segmented masks at the (i, j)th pixel and N 

is the total number of pixels in each image.  The reference 

mask was obtained from manual segmentation. As described 

in section 2.1, the number of training image pairs 

{yref, 𝑦̂} across speakers producing a variety of consonant 
and vowel sounds were 75. We performed data 

augmentation on these images to increase the training set by 

4-fold using random operations of rotation, scaling, and 

shifting. Other relevant training parameters were number of 

epochs = 100, batch size = 2, learning rate =0.0001, dropout 

rate = 0.5 at the fourth and fifth convolution operations and 

a choice of the adaptive moment estimation (ADAM) 

optimizer. The total training time was 20 hours. 

 

 

 

2.4 Evaluation: 
For evaluating the performance of U-net against seed-

growing and manual segmentation, we used a total of 20 
sustained vowel and consonant sounds from the two 

speakers in our test set.   Manual segmentation obtained 

from user-1 was considered as the reference mask. The 

performance of the proposed automatic U-net airway 

segmentation, an existing seed-growing airway 

segmentation, and a second manual segmentation from a 

different user (termed as user-2) were compared. The 

performances were evaluated in terms of DICE similarity 

(D) of the estimated segmentation mask (𝑦̂) with the 

reference mask (𝑦𝑟𝑒𝑓): 

                               𝐷 =  
2(|𝑦𝑟𝑒𝑓| ∩|𝑦̂|)

|𝑦𝑟𝑒𝑓|+ |𝑦̂|
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Figure 2: U-net architecture. Each blue box represents a multi-
channel feature map with number of features represented on 

top of the box. White boxes correspond to copied feature 
maps. Different color arrows denote different operations as 
listed in the legends on the bottom right. 

Figure 1: Datasets used in this study were from the USC-
speech morphology database. Shown here are example vocal 
tract poses from 8 speakersin training set, and 2 speakers in 
testing set. 
 



The seed-growing algorithm was implemented in 

MATLAB. For every test image, we manually specified the 

location of the initial seed in a square region of interest 
(ROI) whose boundaries were defined to be the beginning of 

the lips, top of the hard palate, the pharyngeal wall, and the 

bottom of the glottis. The average processing times of all the 

U-net, seed-growing, and the manual segmentations were 

recorded and compared on the test set.  For seed-growing, 

the processing time also included the time spent for 

specifying the seed, and drawing the square ROI. 

 

 
3. RESULTS AND DISCUSSION 

Figure 3 shows representative segmentations of consonant 

sounds (atha, afa), and vowel sounds (bait, bat) from the test 

set. The reference segmentations from user-1 are overlaid 

with the segmentations from the three schemes of the 

manual segmentation from user-2, proposed U-net 

segmentation, and the seed-growing segmentation.  The 

DICE coefficients are shown on the images. While seed-

growing segments the vocal airspace, it is sensitive to 

leaking into airspaces beyond the vocal tract. These were 

observed in regions with low contrast between the air-tissue 
boundary (eg. near the boundaries of the air-hard palate; air-

velum). In contrast, U-net segmentation consistently 

provided a higher DICE similarity, and depicted good 

segmentation accuracy. The U-net segmentation has subtle 

differences with manual segmentations from the second 

user. In some of the images, U-net segmentation was 

observed to be sensitive to the spatial piece-wise blurring 

artifacts typical with total variation regularization. This is 

observed prominently in the bait stimuli shown in the third 

row, where there are subtle mismatches of the U-net 

segmentation with both the manual segmentations.  

Figure 4 shows the average DICE similarity of all 
the methods with reference segmentations on all the 20 test 

images. The U-net segmentation (mean DICE = 0.9) shows 

a considerable improvement over seed-growing (mean 

DICE = 0.86), and a minor difference compared to a manual 

segmentation from user-2 (mean DICE = 0.91).  

 
Figure 3: Vocal tract airway segmentations on test data. Example stimuli from two consonant sounds (afa, atha), and two vowel 
sounds (bait, bat) are shown. Reference manual segmentation from user-1 (second column) are overlaid on the segmentations from 
manual segmentation from user-2 (third column), proposed U-net segmentation (fourth column), and the seed-growing segmentation 
(fifth column). Each inset from the three segmentations also show the corresponding DICE similarity with the reference segmentation.  

 



U-net provided considerably faster processing 

times to generate the segmentation. The average mean 

processing times across 20 test images were 0.21sec/image 

for U-net segmentation, 11.6sec/image for seed-growing 

segmentation and 45 sec/image for the manual segmentation 
from user-2.  

 

4. CONCLUSION 

We successfully demonstrated airway segmentation of the 

vocal tract in speech MRI using the U-net architecture. The 

architecture is trained to learn the end to end mapping 

between the mid-sagittal image and the segmented airway. 

Once trained, the model performs fast airway segmentations 

at the order of 0.21sec/image on a CPU with 12 cores. We 

demonstrated U-net to provide considerably improved DICE 

similarity compared to existing seed-growing segmentation, 
and minor differences in DICE similarity compared to 

manual segmentation. Future work includes adaptations to 

training to be robust to typical reconstruction artifacts, 

learning disjoint airway masks along the vocal tract as 

occurred in dynamic imaging, extensions to 3D network 

architectures (eg. as in [14]), and implementations on a GPU 

for faster training times.   

  

 

 
Figure 4: DICE similarity of the reference (user-1) segmentation 
with segmentations from user-2, U-net, seed-growing across all 20 
test images.  U-net segmentation has higher mean DICE similarity 
over seed-growing, and has marginally lower DICE similarity 
when compared to manual segmentation from user-2.  
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