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Joint Arterial Input Function and Tracker Kinetic
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Consistency Constraint
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Purpose: To develop and evaluate a model-based reconstruc-

tion framework for joint arterial input function (AIF) and kinetic
parameter estimation from undersampled brain tumor dynamic

contrast-enhanced MRI (DCE-MRI) data.
Methods: The proposed method poses the tracer-kinetic (TK)
model as a model consistency constraint, enabling the flexible

inclusion of different TK models and TK solvers, and the joint
estimation of the AIF. The proposed method is evaluated using

an anatomic realistic digital reference object (DRO), and nine
retrospectively down-sampled brain tumor DCE-MRI datasets.
We also demonstrate application to 30-fold prospectively

undersampled brain tumor DCE-MRI.
Results: In DRO studies with up to 60-fold undersampling, the

proposed method provided TK maps with low error that were
comparable to fully sampled data and were demonstrated to
be compatible with a third-party TK solver. In retrospective

undersampling studies, this method provided patient-specific
AIF with normalized root mean-squared-error (normalized by
the 90th percentile value) less than 8% at up to 100-fold

undersampling. In the 30-fold undersampled prospective
study, the proposed method provided high-resolution whole-

brain TK maps and patient-specific AIF.
Conclusion: The proposed model-based DCE-MRI recon-
struction enables the use of different TK solvers with a model

consistency constraint and enables joint estimation of patient-
specific AIF. TK maps and patient-specific AIF with high fidelity

can be reconstructed at up to 100-fold undersampling in k,t-
space. Magn Reson Med 000:000–000, 2017. VC 2017 Inter-
national Society for Magnetic Resonance in Medicine.
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INTRODUCTION

Dynamic contrast-enhanced (DCE) MRI is a powerful
technique for probing subvoxel vascular properties of tis-
sue including fractional plasma volume, fractional extra-
cellular–extravascular volume, and clinically important
transfer constants. DCE-MRI involves capturing a series
of images before, during, and after administration of a
T1-shortening contrast agent. Tracer-kinetic (TK) parame-
ter maps are then computed from the dynamic images,
and provide information for diagnosis and monitoring
treatment response (1–3). DCE-MRI is used throughout
the body, most commonly in the prostate, breast, liver,
and brain. In the brain, DCE-MRI has shown value in the
assessment of brain tumor, multiple sclerosis, and Alz-
heimer disease (4–6).

With conventional Nyquist sampling, DCE-MRI is
often unable to simultaneously provide adequate spatio-
temporal resolution and spatial coverage. A typical brain
DCE-MRI provides 5-s temporal resolution, which is a
minimum requirement for accurate TK modeling (7,8).
Using Cartesian sampling at the Nyquist rate, only 5–10
slices are achievable. This is typically inadequate in
large glioblastoma cases and cases with scattered meta-
static disease that may be spread throughout the brain
(9). It is possible to coarsen spatial resolution to achieve
greater spatial coverage, but this compromises the ability
to evaluate the narrow (1–2 mm) enhancing margin of
glioblastomas and the ability to evaluate small lesions.

Thus, techniques involving undersampling and con-
strained reconstruction have been proposed to simulta-
neously provide high spatial resolution and whole-brain
coverage. Early work used compressed sensing and par-
allel imaging to reconstruct dynamic images from under-
sampled k,t-space data (10–12). Standard TK modeling
software was then used to generate high-resolution
whole-brain TK maps based on the reconstructed images
(9,13). A more recent proposed approach was to enforce
the TK model and directly estimate TK parameters from
undersampled k,t-space data (14). Similar model-based
reconstruction approaches have been used for MRI relax-
ometry (15,16), PET kinetic parameter estimation (17,18),
and recently, DCE-MRI kinetic parameter estimation
(14,19–21). Compared with conventional compressed
sensing techniques that reconstruct dynamic images first,
the model-based approach provides superior results and
allows higher undersampling rates (14,21). Direct kinetic
parameter estimation makes the most efficient use of
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acquired information; however, it is sensitive to inaccu-
racy of the forward model. Two major issues with this
are variations in the arterial input function (22) and prior
knowledge of the appropriate TK model (23–25).

In conventional DCE-MRI, images are reconstructed for

each time point. Patient-specific arterial input functions
(AIF) can be identified from vessel pixels using either

manual region of interest (ROI) selection or automatic
cluster-based ROI selection (26). Some centers use a

fixed population-averaged AIF (27), an institutionally
derived population AIF, or a delay and dispersion-

corrected version of these (9). The use of a patient-
specific AIF (pat-AIF) is generally preferred because it is

known to provide more accurate TK mapping (22). The
estimation of pat-AIF from undersampled data is

extremely challenging due to undersampling artifacts.
Current model-based TK reconstruction approaches rely

on the use of a population-averaged AIF (pop-AIF)
(14,21). This is considered a major limitation of these

approaches because the use of a pop-AIF can lead to sig-
nificant errors in the resulting TK maps (22).

In this study, we developed a DCE-MRI reconstruction

approach that allows for integration of different TK mod-
els and/or different TK solvers as well as joint estimation

of the patient-specific AIF and TK parameter maps. We
evaluated the performance of the proposed method using

simulated DCE-MRI data from a physiologically realistic
digital reference object (DRO) and in vivo DCE-MRI data

from brain tumor patients. We also tested its application
to prospectively undersampled high-resolution whole-

brain DCE-MRI data.
We propose simultaneous reconstruction of TK maps

and dynamic images, where TK model consistency is

applied as a penalized reconstruction constraint and the
pat-AIF can be iteratively estimated from the dynamic

images. This approach is inspired by recent studies of
accelerated quantitative MR relaxometry (28,29), where

physical or physiological model consistency was applied
as a penalized reconstruction constraint (not strictly

enforced). This consistency constraint allowed for the
data fit to deviate from the model, which made the

scheme robust to scenarios with model inconsistencies
(e.g., motion). For DCE-MRI, TK model is applied as a

consistency constraint with a regularization parameter
that balances the tradeoff between data consistency and

model consistency. We show that this approach provides
a much more flexible framework for direct model-based

reconstruction of accelerated DCE-MRI.

THEORY

Model Consistency Constraint

This method jointly estimates contrast concentration ver-
sus time images (C) and TK parameter maps (h) from the

undersampled data (y) by solving the following least-
squares problem:

ðC; uÞ ¼ argmin
C;u

jjUFEðcC þ S0Þ � yjj22 þ bjjPðuÞ � Cjj22: [1]

The first l2 norm represents data consistency, where C
should be consistent with the measured data y by W

(signal equation), U (undersampling mask), F (Fourier
transform), and E (sensitivity encoding). S0 is the first
temporal frame images that are fully sampled. The sec-
ond l2 norm represents model consistency, where C is
consistent to the forward modeling (P) of TK parameter
maps (Patlak, eTofts etc.). This formulation can be sim-
plified to

ðC; uÞ ¼ argmin
C;u

jjAC � bjj22 þ bjjPðuÞ � Cjj22; [2]

where A 5 UFEW represents data consistency modeling,
b 5 (y1UFES0) is the known data.

To solve the least-square optimization problem in
Equation [2], we alternatively solve for each variable
while keeping others constant. For each iteration n,

Cnþ1 ¼ argmin
C

jjAC � bjj22 þ bjjPðunÞ � Cjj22; [3]

unþ1 ¼ P�1ðCnþ1Þ: [4]

Note that Equation [3] is regularized SENSE reconstruc-
tion with an l2 norm constraint that can be solved effi-
ciently using conjugate gradients (30). Equation [4] is
backward TK modeling that can be solved using any
DCE-MRI modeling toolbox. Because forward modeling
(P) and backward modeling (P�1) are used iteratively, the
modeling solver should not utilize linearization or other
forms of approximation. For example, ROCKETSHIP (31)
and TOPPCAT (32) are two suitable solvers. Detailed
substeps and variants of Equations [3] and [4] are pro-
vided in the Appendix.

Joint AIF and TK Parameter Estimation

The proposed formulation allows for joint estimation of
the patient-specific AIF. Equation [2] can be modified to
estimate C, h, and AIF from undersampled data by solv-
ing the following least-squares problem:

ðC; u;AIFÞ ¼ argmin
C;u;AIF

jjAC � bjj22 þ bjjPðu;AIFÞ � Cjj22: [5]

Similar to the above, we solve each variable alternatively
as follows (nth iteration):

Cnþ1 ¼ argmin
C

jjAC � bjj22 þ bjjPðun;AIFÞ � Cjj22 [6]

unþ1;AIFn ¼ P�1ðCnþ1Þ: [7]

Equation [7] is backward TK modeling from contrast con-
centration including pat-AIF estimation. This can be per-
formed by identifying an arterial ROI once, using the
time-averaged image or postcontrast image. Within each
iteration, it is then possible to: 1) apply this ROI to C to
estimate the AIF (averaging the pixels) and 2) use the
updated AIF during TK modeling. This is a common pro-
cedure in TK modeling for DCE-MRI. The only difference
is identification of the arterial ROI before the reconstruc-
tion of the dynamic images.

Theoretical Benefits

The proposed method formulates model consistency as a
constraint with a penalty b and decouples it from data
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consistency. There are multiple benefits of this formula-

tion: 1) algorithm complexity is reduced compared to

recently proposed direct reconstruction techniques that

require complex cost function gradient evaluations

(14,20,33); 2) different TK models can easily be included

in this formulation, as described above; 3) patient-

specific AIFs can be estimated jointly with TK maps, as

described above; and 4) the penalty b can allow for TK

model deviation, reducing errors that may be caused by

strict model enforcement (29). This study specifically

demonstrates items #2 and #3.

METHODS

Data Sources

Digital Reference Object

Anatomically realistic brain tumor DCE-MRI DRO was

generated based on the method and data provided by

Bosca and Jackson (34). The extended Tofts (eTofts)

model was used to generate contrast concentration

curves with known TK parameter maps and pop-AIF

(27). Coil sensitivity maps measured on our MRI scanner

(3T, eight-channel head coil) were coregistered to the

DRO and used to generate realistic MRI k-space data

(35). Gaussian noise were added to the image space to

simulate noise levels typical of DCE-MRI at 3T and 1.5T.

Retrospective

Nine anonymized fully sampled brain tumor DCE-MRI

raw data sets were obtained from patients who had

undergone routine brain MRI examinations with contrast

(including DCE-MRI) at our institution. The study proto-

col was approved by our Institutional Review Board. The

acquisition was based on a 3D Cartesian fast spoiled

gradient echo (SPGR) sequence using the following

parameters: field of view¼ 22� 22�4.2 cm3, spatial reso-

lution¼0.9�1.3�7.0 mm3, temporal resolution¼ 5 s, 50

time frames, eight receiver coils, flip angle¼ 15�, echo

time¼ 1.3 ms, repetition time¼ 6 ms. DESPOT1 was per-

formed before DCE-MRI, with a flip angle of 2�, 5�, and

10� to estimate precontrast T1 and M0 maps. The con-

trast agent, gadobenate dimeglumine [MultiHance Bracco

Inc.; relaxivity r1¼ 4.39 s�1 � mM�1 at 37�C at 3T (36)]

was administered with a dose of 0.05 mmol/kg, followed

by a 20-mL saline flush in the left arm via intravenous

injection.

Prospective

Prospectively undersampled data were acquired in one

brain tumor patient (male, age 65 years, glioblastoma)

with Cartesian golden-angle radial k-space sampling

(9,37). 3D SPGR data were acquired continuously for

5 min. Whole-brain coverage was achieved with a field

of view of 22*22*20 cm3 and spatial resolution of

0.9*0.9*1.9 mm3. The prospective study protocol was

approved by our Institutional Review Board. Written

informed consent was provided by the participant.

Demonstration of TK Solver Flexibility

To demonstrate TK solver flexibility, DRO data was ret-

rospectively undersampled using a randomized golden-
angle sampling pattern at R¼60� (37). Gaussian noise
were added to the image space, creating signal-to-noise
ratio (SNR) levels of 20 and 10 (white matter based) for
simulation of DCE-MRI image quality at 3T and 1.5T.
The proposed method with eTofts modeling was used to
reconstruct TK parameter maps at R¼60� and SNR¼20
and 10, respectively. An in-house gradient-based algo-
rithm and an open-source TK modeling toolbox, ROCK-
ETSHIP (31), were used for the eTofts solver in the
proposed algorithm (Eq. [4]). Tumor ROI Ktrans correla-
tion coefficient, R2 and normalized root mean-squared-
error (nRMSE, normalized by the 90th percentile value
within the tumor ROI) between the estimated and true
values were calculated and compared. Note that tumor

ROI 90th percentile Ktrans value has been found to be a
sensitive and clinically valuable DCE-MRI biomarker
(38,39), hence normalization of RMSE by this value. TK
maps estimated from the noisy fully sampled images
(SNR¼20, R¼1�) were also compared with the true TK
maps to evaluate the performance of the proposed
method with respect to errors found in conventional
DCE-MRI.

Demonstration of TK Model Flexibility

The nine fully sampled patient data were fitted to the
Patlak and eTofts models to calculate the model fitting
error, and an F-test was performed in the tumor ROI to
determine whether the Patlak or eTofts model is the
most appropriate fit (23–25). In the F-test (40,41), the
null hypothesis is that the two samples of sum-of-
squared modeling errors were drawn from the same pool.
The failure of this hypothesis leads to acceptance of the
higher-order model. Thus, for each pixel, the F-test will
reveal whether a higher-order model (eTofts model)
should be used (23–25). If more than 50% of the tumor
pixels were appropriately fitted for a certain model, this
model was selected for the data set. We reconstructed
the corresponding TK parameter maps for fully sampled
data (used as reference) and at undersampling rates of

20�, 60�, and 100� for all nine cases. A randomized
golden-angle sampling pattern (37) was used in the kx-ky

plane, simulating ky-kz phase encoding in a 3D whole-
brain acquisition. Images were reconstructed using a
pop-AIF (27) with patient-specific delay corrected by the
delay estimated from k-space center (42). ROI-based
Ktrans nRMSE and Ktrans histograms were calculated
based on the reference Ktrans maps. Ktrans histogram
skewness and 90th percentile Ktrans values were also
measured for evaluation, as they have been shown to be
valuable in the clinical assessment of brain tumors by
DCE-MRI (38,39,43).

Demonstration of Joint AIF and TK Estimation

The cases following the Patlak model were reviewed
with special attention to vessel signal. Cases that showed
significant precontrast inflow enhancement were identi-
fied and subsequently excluded. With the remaining
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cases, we performed joint estimation of AIF and Patlak

parameter maps from undersampled data across sam-

pling rates of 20�, 60�, and 100�. For each undersam-

pling rate, 15 realizations were generated by varying the

initial angle of the golden-angle radial sampling pattern

(37). The golden-angle radial sampling with different ini-

tial angle will create mostly nonoverlapped k-space cov-

erage, effectively providing different noise realizations

with the same noise level (white matter SNR¼ 20).

Reconstructed patient-specific AIFs were compared with

the fully sampled reference using nRMSE (normalized to

the 90th percentile AIF value over time) and bolus peak

difference. ROI-based Ktrans nRMSE (normalized to the

90th percentile Ktrans value over the tumor ROI) were

also calculated for evaluation.

Demonstration with Prospectively Undersampled Data

We tested the application of the proposed method for

joint AIF and TK parameter estimation on prospectively

30�undersampled high-resolution whole-brain DCE-

MRI data. Five-second temporal resolution was achieved

by grouping raw (k,t)-space data acquired within consec-

utive 5-s intervals, effectively 30�undersampling com-

pared with Nyquist sampling (44). pat-AIF and TK maps

were jointly reconstructed using the proposed model

consistency constraint approach. pat-AIF ROI was

selected based on time-averaged images. Three-plane of

Ktrans and vp maps and pat-AIF are presented for visual

assessment.

RESULTS

Figure 1 shows the DRO reconstruction results at

R¼ 60� for SNR¼20 and 10. The eTofts model was

used to generate the simulated DCE-MRI data, and also

for model-based reconstruction. TK maps estimated from

fully sampled (R¼1�) noisy images are also shown to

evaluate the performance in the context of normal DCE-

MRI modeling with noise. b¼0.1 and iteration¼ 100

were chosen based on prior experiments. Computation

time for the conversion from concentration versus time

to TK maps was 3.44 s for the in-house gradient-based

method, and 31.62 s for ROCKETSHIP with parallel com-

puting turned on (four workers). Pixel-wise correlation

plots between the true and estimated Ktrans values are

shown at the bottom row, with calculated R2 at the

upper left corner, and correlation coefficient at the lower

right corner. Both methods were able to restore Ktrans

maps with less than 50% error, and the in-house solver

was able to restore the TK maps at the quality close to

fully sampled noisy results. The ROCKETSHIP solver is

FIG. 1. The proposed method is compatible with third-party TK solvers. Shown are results from an anatomically realistic brain-tumor
DCE-MRI digital reference object using an in-house solver and the ROCKETSHIP solver, both using the model consistency constraint

method. R¼60�were tested at white matter SNR level of 20 and 10. Tumor ROI Ktrans nRMSE (normalized to 90th percentile value)
were shown on the upper left corner of respective Ktrans maps. Correlation plots are shown at the bottom of each respective result,
where the upper left corner shows the R2 value and the lower right corner shows the correlation coefficient. Both methods were able to

restore Ktrans maps with less than 50% nRMSE, whereas the ROCKETSHIP solver yielded Ktrans maps with higher errors, especially at
SNR¼10. Kep and vp maps are more sensitive to noise, especially when using the ROCKETSHIP solver.
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more sensitive to increased noise level, especially for

Kep and vp maps. These results show that the proposed
method can restore TK maps from highly undersampled

data (R¼60�) with quality close to modeling results

from fully sampled noisy images. It also shows that this

method is compatible with a third-party TK solver.
Figures 2 and 3 illustrate the impact of regularization

parameter b for one representative in vivo brain tumor
dataset, using the Patlak model, at R¼ 20�. The cost

function values as a function of iteration number, l-

curve, and the final reconstructed TK maps are plotted

for different b values. A large b resulted in slow conver-

gence, whereas a smaller b provided fast convergence.
This behavior was expected, as ill-conditioning of the

problem in Equation [3] increases with b (45). TK maps

obtained with a large b showed poor fidelity as data con-

sistency was violated, whereas the maps with a small b

were equivalent to a SENSE reconstruction without con-
straints and demonstrated g-factor–related artifacts at

R¼ 20�. The L-curve shows the balance between the

data consistency and model consistency, based on which

of the b values in the range of 0.1 to 1 (green

highlighted) show similar performance. We then tuned

the b value in this range for different cases. We found
the acceptable range to be roughly 1 order of magnitude

and to be consistent among the four cases that we exam-

ined carefully.
Based on the tumor ROI F-test, the Patlak model was

appropriate for six in vivo cases, whereas the e-Tofts

model was appropriate for three in vivo cases. Figures 4
and 5 show representative cases of Patlak and eTofts

model, respectively, at R¼60� and R¼ 100�. Ktrans and

vp maps on the zoomed-in tumor region are shown (Kep

for eTofts is not shown). Histograms of the Ktrans values

within the tumor ROI are plotted for the respective cases
(bottom row). Figure 6 shows quantitative evaluation of

all the in vivo reconstruction results focusing on Ktrans

values. For Patlak model reconstruction, the 90the per-

centile Ktrans values matched well with the reference val-

ues across all cases and, the histogram skewness was
also reasonably matched. Across all cases and undersam-

pling rates, nRMSE was less than 32%. For the eTofts

model, the 90th percentile Ktrans values matched well

with reference for one case and had larger deviation for

FIG. 2. Performance for different b values at R¼20� for one representative in vivo data set. (a) The l-curve shows that b value controls
the balance between model and data consistency. (b–d) Convergence of the cost function to within 1% of its final value required 116,

24, 10, 4, and 2 iterations for b values of 10, 1, 0.1, 0.01, and 0.001, respectively. The actual reconstructed TK maps for different b val-
ues are shown in Figure 3.

FIG. 3. TK maps reconstructed for different b values using the case described in Figure 2. Tumor ROI nRMSE (Ktrans) are 0.102, 0.073,

0.072, 0.098, and 0.105 for b values 10, 1, 0.1, 0.01, and 0.001, respectively. Reconstruction with small b values converged quickly and
is closer to a SENSE reconstruction with associated g-factor losses and undersampling artifacts. Reconstruction with large b values

shows slow convergence and provides less accurate TK maps due to the data consistency being violated.
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FIG. 4. Reconstruction of the TK

maps of one representative in
vivo brain tumor case using the

Patlak model at R¼60� and
100�. Tumor ROI (indicated in
the reference images) histo-

grams are shown below the
respective cases. Detailed eval-

uation of the ROI Ktrans histo-
grams by skewness, 90th
percentile, and nRMSE are

shown in Figure 6.

FIG. 5. Reconstruction of the TK
maps of one representative in
vivo brain tumor case using the

eTofts model at R¼60� and
100�. Tumor ROI (indicated in

the reference images) histo-
grams are shown below the
respective cases. Detailed eval-

uation of the ROI Ktrans histo-
grams by skewness, 90th
percentile, and nRMSE are

shown in Figure 6.
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the other cases at R¼ 100�. The nRMSE also increased
considerably as the undersampling rate was increased.

Figure 7 shows the selection of AIF ROI from under-
sampled data, the comparison of pop-AIF and pat-AIF,
and the resulting TK maps in one representative in vivo
data set. This figure shows that the ROI of pat-AIF can
be easily selected based on average of undersampled
data. This ROI can then be used for joint reconstruction
of AIF and TK parameters in the proposed method. Fig-
ure 8 shows the reconstruction results of TK maps and
pat-AIF (same case as Fig. 7) at different undersampling
rates. Compared with the AIF extracted from fully sam-
pled data, the proposed method was able to provide
clear depiction of AIF peak up to R¼100�, with good-
quality TK maps restored at the same time.

Figure 9 shows the quantitative evaluation of joint AIF
and TK reconstruction across the four in vivo data sets.
Based on the nRMSE of the TK maps, TK maps can be
restored with error less than 30% at for all cases and
undersampling rates. Radial sampling patterns with dif-
ferent initial angle created different noise realization for
each case, and multiple noise realizations show that the
method is robust to noise, with an expected increase in
variance at higher undersampling rates. The shape of the

AIF can be estimated at up to R¼100�, with AIF

nRMSE below 8% for all cases. The peak of the AIF

shows larger variance for different noise realization,

since the peak is only one point. However, the proposed

method is still able to restore the AIF peak up to

R¼ 60�, with the error at most 0.25 mmol across all

cases.
Figure 10 shows reconstruction of pat-AIF and TK

maps from prospectively undersampled in vivo data

from a brain tumor patient. This result demonstrates that

whole-brain TK maps can be reconstructed jointly with

patient-specific AIF, with no obvious undersampling

artifacts in the final TK maps. The clinically meaningful

benefits of undersampling can be best demonstrated in a

prospective study, where arbitrary reformats of the 3D

TK maps are made possible by the ability to achieve

high spatial resolution and whole-brain coverage.

DISCUSSION

We have described, demonstrated, and evaluated a novel

model-based reconstruction approach for DCE-MRI in

which the TK model is posed as a penalized consistency

constraint. By this formulation, we decoupled the TK

FIG. 6. Quantitative evaluation of Patlak (top row) and eTofts (bottom row) reconstruction on nine retrospective undersampled in vivo

cases. The 90th percentile of the reconstructed Ktrans values for different cases was plotted against the reference 90th percentile Ktrans.
(a) For the Patlak model, the values matched well for all cases and undersampling rates. (d) For the eTofts model, the values matched

well for R¼20� and 60� and had larger deviation for R¼100�. (b, e) The Ktrans histogram skewness was also plotted against the refer-
ence histogram skewness. The tumor ROI Ktrans nRMSE (normalized based on reference 90th percentile Ktrans value) were plotted
against different R’s across different cases. (c) For Patlak reconstruction, the nRMSE were less than 32% consistently for all cases and

undersampling factors. (f) For eTofts reconstruction, the nRMSE were less than 15% at lower undersampling rates, then increase con-
siderably at higher undersampling rates.
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FIG. 7. Left: Extraction of pat-AIF (b) from a manually selected ROI on the peak contrast frame of fully sampled in vivo data set (a). The

pop-AIF shown in panel b was delay corrected. In the undersampling scenario, a time-averaged image can be generated (c), and even
at R¼100� (d) it is straightforward to select an artery ROI from this image for the joint AIF and TK map reconstruction. Right: Different
AIFs can result in different TK maps (e–h), and pat-AIF is preferred for more accurate TK modeling.

FIG. 8. Joint reconstruction of TK maps (cropped portion of the case in Fig. 5) and AIF at R¼20�, 60�, and 100� for one representa-

tive in vivo case. Compared with the fully sampled reference, the proposed method is able to restore both AIF and TK maps at the
same time, even at a high undersampling rate of 100�. Quantitative evaluation of TK maps and AIF, including this case, are presented

in Figure 7. Supporting Video S1 demonstrates the estimated pat-AIF versus iteration number.
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model consistency from the k,t space data consistency.
The two sub-problems can be solved using existing tech-
niques, namely TK modeling (including AIF estimation)
and regularized SENSE reconstruction. The proposed
approach allows for easy inclusion of different TK solv-
ers, including third-party solvers, and also allows for
joint estimation of the patient-specific AIF. We have
demonstrated the robustness of the proposed method in
one anatomically realistic brain tumor DRO, and a retro-
spective study of nine brain tumor DCE-MRI datasets.
The DRO study demonstrated that the proposed method
provides performance comparable to conventional TK
modeling results from fully sampled noisy images, with
only a 2% higher error at 60-fold undersampling. The
retrospective study shows that the proposed method is
robust to noise across different cases, and can provide
accurate TK maps with less than 32% error, and AIF
with less than 8% error up to 100-fold undersampling.

We also demonstrated the application of the proposed
method to prospectively undersampled data, where
whole-brain high-resolution TK maps can be jointly
reconstructed with pat-AIF.

The proposed method has a few important limitations.
First, the alternating algorithm proposed is a two-loop
iteration, where an iterative solver is needed for each
subproblem. Compared with a gradient-based direct
reconstruction (14), this formulation takes longer com-
puting time. This issue can be addressed by using more
powerful computers, implementing in C, and/or using
GPU acceleration.

Second, although we demonstrate that the proposed
method is compatible with a third-party solver, it
requires that the solver not use any approximation for
the modeling. This is because the proposed approach
requires the backward and forward modeling operators
to be exact inverses of each other, otherwise error will

FIG. 9. Quantitative evaluation of the joint AIF and TK reconstruction for the four in vivo retrospective undersampled cases across

R¼20�, 60�, and 100�. (a) Ktrans nRMSE was calculated as the spatial RMSE across all tumor pixels, divided by the 90th percentile
of the reference tumor Ktrans value. (b) AIF nRMSE was calculated as the temporal RMSE divided by the 90th percentile of the reference

AIF. (c) AIF peak error was calculated as the reference peak minus the estimated peak. As expected, the nRMSE mean and variance all
increased with undersampling rate across different cases.

FIG. 10. Joint reconstruction of pat-AIF and TK maps from in vivo prospective undersampled data. Whole-brain high-resolution TK

maps can be provided together with pat-AIF using the proposed model-based reconstruction approach.

Joint Arterial Input Function and Tracker Kinetic Parameter Estimation 9



accumulate during the iteration process. For higher-order

TK models, a few linearized approximation approaches

have been proposed for fast computation (46,47). Unfor-

tunately, those approximation methods are not compati-

ble with this framework.
Third, although we have shown that this method can

include different TK solver, it may be difficult to use a

nested model that selects between several different local

models based on local fitting errors (23–25). This type of

approach has been shown in the literature to be advanta-

geous. The quality of intermediate anatomic images in

the proposed method, especially in the first few itera-

tions, may make it challenging to generate a modeling

mask needed for nested models.
Fourth, we have not accounted for phase that can be

induced by the contrast agent (primarily in vessels).

Many centers, including ours, use a half dose for DCE-

MRI, which makes this effect negligible. If a full dose is

used, the potential phase effects on the AIF signal can

and should be modeled using the closed-form solution

by Simonis et al. (48).
In conclusion, we have demonstrated a novel model-

based reconstruction approach for accelerated DCE-MRI.

Posing the TK model as a model consistency constraint,

this formulation provides flexible use of different TK

solvers, joint estimation of pat-AIF, and straightforward

implementation. In anatomically realistic brain tumor

DRO studies, the proposed method provides TK maps

with low error that are comparable to fully sampled data.

In retrospective undersampling studies, this method pro-

vides TK maps with nRMSE less than 32% and pat-AIF

with nRMSE less than 8% at undersampling rates up to

100�.
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APPENDIX

The proposed method uses an alternating approach to

solve for C and h from undersampled k,t-space data. This

appendix details the steps involved in solving the two

subproblems shown in Equations [3] and [4].
In Equation [3], we solve for the contrast concentra-

tion versus time from the measured data using the fol-

lowing equation:

Cnþ1 ¼ argmin
C

jjAC � bjj22 þ bjjPðunÞ � Cjj22; [3]

where A 5 UFEW. We first solve for the image difference

(DS) from b (since the precontrast signal S0 is included

in b) by solving the following least-square problems

using conjugate gradients (or another iterative algorithm

for least-square problems). We use the result from the

previous iteration as an initial guess for faster

convergence:

DS ¼ argmin
DS

jjUFEðDSÞ � bjj22 þ jjDS� cPðunÞjj22; [A1]

where the first term represents SENSE, and the second
term is an identity constraint to WP(hn) that is constant
in this step. P is the forward modeling from TK maps to
contrast concentration versus time C, and W is the con-
version from contrast concentration C to signal differ-
ence DS following the steady-state SPGR signal equation:

DS ¼ cðCÞ

¼
M0sina

�
1� e�TR�ðR0þC�r1Þ

�
1� cosae�TR�ðR0þC�r1Þ

�M0sinað1� e�TR�R0Þ
1� cosae�TR�R0

;

[A2]

where TR is the repetition time, a is the flip angle, and
r1 is the contrast agent relaxivity. R0 and M0 are the pre-
contrast R1 (reciprocal of T1) and the equilibrium longi-
tudinal magnetization that are estimated from a T1

mapping sequence. In this study, we used DESPOT1 (49)
before the DCE-MRI scan.

Note that W is a one-to-one mapping for each voxel,
and its inversion [C 5 W21(DS)] is:

Rt ¼ �
1

TR
ln

1� DS

M0sina
þ 1� e�TR�R0

1� cosae�TR�R0

� �

1� cosa
DS

M0sina
þ 1� e�TR�R0

1� cosa�TR�R0

� �

C ¼ ðRt � R0Þ=r1

[A3]

Equation [A3] is used to compute C after solving for DS
using Equation [A1]; this completes the detailed algo-
rithm for solving Equation [3].

After C is estimated, Equation [4] represents backward
TK modeling. C(t) is used in the equation below to avoid
confusion. For the Patlak model, Equation [4] is
expressed as

CðtÞ ¼ PðuÞ ¼ PðKtrans; vpÞ ¼ Ktrans

Z t

0

CpðtÞdtþ vpCpðtÞ;

[A4]

where Cp(t) is the AIF. The Patlak model is linear, and a
pseudo-inverse can be used to solve h¼P�1(C).

For the eTofts model, Equation [4] is expressed as

CðtÞ ¼ PðuÞ ¼ PðKtrans; vp;KepÞ

¼ Ktrans

Z t

0

CpðtÞe�Kepðt�tÞdtþ vpCpðtÞ; [A5]

where an extra TK parameter Kep is modeled for better
fitting. eTofts is nonlinear, and an iterative algorithm
can be used to solve this model fitting:

u ¼ argmin
u

jjPðuÞ � C jj22: [A6]

We use a gradient-based l-BFGS algorithm to solve Equa-
tion [A6], where we derive the gradient for each TK
parameter. In this study, we also used an open-source
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DCE-MRI TK modeling toolbox, ROCKETSHIP (31), for

comparison.
The code and examples of the proposed algorithm are

publicly available at the following URL: https://github.

com/usc-mrel/DCE_MOCCO.
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Additional Supporting Information may be found in the online version of
this article.

Video S1: Movie of estimated pat-AIF versus iteration number at under-
sampling rate R 5 203, 403, 603, 803, 1003, 1203.
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