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ABSTRACT 

We propose a patient-specific arterial input function 

(AIF) and tracer kinetic (TK) model-driven network to 

rapidly estimate the extended Tofts-Kety kinetic model 

parameters in DCE-MRI. We term our network as AIF-TK-

net, which maps an input comprising of an image patch of the 

DCE-time series and the patient-specific AIF to the output 

image patch of the TK parameters. We leverage the open-

source NEURO-RIDER database of brain tumor DCE-MRI 

scans to train our network. Once trained, our model rapidly 

infers the TK maps of unseen DCE-MRI images on the order 

of a 0.34 sec/slice for a 256x256x65 time series data on a 

NVIDIA GeForce GTX 1080 Ti GPU. We show its utility on 

high time resolution DCE-MRI datasets where significant 

variability in AIFs across patients exists. We demonstrate that 

the proposed AIF-TK net considerably improves the TK 

parameter estimation accuracy in comparison to a network, 

which does not utilize the patient AIF.  

 

1. INTRODUCTION 

Dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) is a powerful quantitative technique to non-

invasively characterize tumor/cancer biology and its response 

to treatment. In the brain, DCE-MRI characterizes the blood-

brain barrier leakiness, which characterizes brain tumors [1]. 

DCE-MRI involves the intravenous administration of a 

contrast agent (e.g., Gadolinium) and continuous acquisition 

of images to track the passage of the contrast through the 

volume. Tracer-kinetic (TK) modeling of the enhancement 

kinetics of the contrast agent enables quantification of TK 

parameters such as Ktrans, Kep which are respectively the 

forward and backward volume transfer coefficient across the 

capillary endothelium, vp: plasma volume, and Fp: plasma 

flow [2]. 

Various TK models have been proposed in DCE-MRI. 

These include linear models such as the 2-parameter Patlak 

model, non-linear models such as the 3-parameter extended 

Tofts-Kety (ETK) model, and the 4-parameter two-

compartment exchange model [2]. The application at hand 

usually motivates the choice of model selection. For example, 

since the ETK model accounts for back-flux of contrast from 

the extravascular space to the plasma, it has been used in 

several brain tumor DCE-MRI studies (e.g., [3], [4]). 

In this paper, we focus on the problem of improving the 

speed of non-linear ETK modeling in DCE-MRI. Classical 

approaches to estimate TK parameters in the ETK model 

employ iterative solvers to perform non-linear voxel-wise 

fitting. These include optimization methods such as the 

Newtonian solver [5], quasi Newtonian limited memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) solver [6], or 

the non-linear conjugate gradient solver.   While these are 

routinely used, they are challenged by long processing times 

(e.g., on the order of few hours for a single slice 256x256x65 

DCE-time series data on a modern 32-core CPU). Recently, 

a convolutional neural network (CNN) based approach has 

shown to significantly improve the estimation time of ETK 

modeling (e.g., on the order of few seconds for a single DCE-

slice) [7]. However, this work did not account for the arterial 

input function (AIF) in the network, partly due to the use of 

low time resolution (73 secs) and long scan time (~24 mins) 

DCE-MRI data. In this work, we improve the accuracy of TK 

model fitting of this network by incorporating patient-

specific AIFs, which can be extracted from large vessels in 

the data (e.g., sagittal sinus). We term our network as AIF-

TK-net, which maps an input comprising of an image patch 

of the DCE-time series and the patient-specific AIF to the 

output image patch of the TK parameters.  We train the 

network using high time resolution (4.8 secs), short scan time 

(~5 minutes) brain tumor DCE-MRI scans from the open-

source NEURO-RIDER database [8]. Once trained, our 

model rapidly infers the TK maps of unseen DCE-MRI 

images on the order of 0.34 secs/slice for a 256x256x65 time 

series data on a NVIDIA GeForce GTX 1080 Ti GPU. We 

demonstrate that there exists significant variability in AIFs 

across patients in the 4.8 sec time resolution DCE data. We 

finally show that the proposed AIF-TK net considerably 

improves the TK parameter estimation accuracy in 

comparison to the network, which does not utilize the patient 

AIF.  
 

2. METHODS 

2.1 DCE-MRI Dataset specifications:  

We used the NEURO-RIDER database, which contained 

multi-parametric MRI scans from 19 brain tumor patients, 

including DCE-MRI, diffusion tensor imaging (DTI), and 

post-contrast 3D FLAIR, all acquired on a 1.5 T scanner [8]. 

DCE-MRI was acquired using a T1 weighted FLASH 

sequence: with flip angle of 25o; spatial resolution of 1 x 1 x 

5 mm3 voxels; TR: 3.8 ms; TE: 1.8 ms; temporal resolution 

of 4.8 sec; scan time of 5.2 minutes.  The images were 



acquired while an intravenous injection of Magnevist 0.1 

mmol/kg at 3ccs/sec, was given to the subject 24 secs after 

the start of the scan. The database also included multi-flip 3D 

FLASH scans at flip angles of 5o, 10o, 15o, 20o, 25o, and 30o 

with a TE of 2.1 ms, and TR of 4.43 ms.  We used the 

DESPOT 1 T1-mapping sequence to estimate the T1 maps 

from the multi-flip angle images. We then converted the DCE 

image intensity vs. time profiles to the concentration vs. time 

profiles using the steady-state spoiled gradient-echo equation 

[9]. The AIF of each patient was found by averaging the 

concentrations in a region of interest containing the sagittal 

sinus.  The averaged AIF was then fitted to a 10-parameter 

AIF model to smoothen any remaining noise [10].  Brain 

tumors were localized in only a few slices of the entire 

volume. We, therefore, considered only those slices that 

contained brain tumors from all the patients. We included 

cases that had enhancing tumors of at least 2 cm (as 

determined by standard bi-directional assessment). We did 

not include tumors that were adjacent to the sagittal sinus, as 

this would result in an atypical AIF. With this criterion, a total 

of 25 slices were selected. Of these, 20 were used for training, 

and 5 for testing.  Slices were segregated at the patient level 

to ensure accurate validation. Figure 1 shows exemplar post-

contrast images (last frame of the DCE-time series), and 

patient-specific AIFs from the test set. As seen here, there 

exists a range of variability in the AIFs across patients with 

regards to the dispersion and the maximum height of the AIF 

curves. 

 

 
 

 

2.2 AIF-TK network architecture and training: 
AIF-TK network architecture is shown in figure 2. We 

modified the recently proposed architecture for kinetic 

parameter estimation [7] to account for the patient-specific 

AIF.  The input to our network is a 24x24x65 patch time 

series from the DCE image time series, and the 1x1x65 AIF 

time series repeated as a 24x24x65 patch time series. The 

AIF-TK net maps the above input to a 24x24x3 patch of TK 

maps (Ktrans, Kep, vp) at the output. The patches were extracted 

from the DCE image time series training data with a stride 

length of 6 pixels. Similar to [7], the architecture had two 

paths, a global and local pathway. While the local pathway 

extracts local neighborhood features, the global pathway 

extracts contextual global characteristics by using three 

dilated convolution layers with dilation factors of 2,4,8. The 

Rectified Linear Unit (ReLU) activation function was used 

after each convolution layer. The number of features in each 

layer was 64. The output of the pathways is then merged and 

fed into three pseudo-fully connected layers with 256 and 128 

features. The third layer maps the input patch with 128 

features to an output patch containing three features, each 

representing the Ktrans, Kep, vp parameters. Convolutions in 

these three pseudo-fully connected layers employed a 1x1 

kernel size, so the spatial dimension (24x24) and 

relationships of the propagating patch are maintained.   

 

 
 

For training, we used reference TK maps that were 

obtained by solving the extended Tofts-Kety model with the 

L-BFGS iterative algorithm. We trained the AIF-TK-net to 

minimize the root mean square error between the predicted 

TK maps, and the above reference TK maps.  We used the 

following training parameters:  total patches in the training 

set = 17000; batch size = 1000 about one slice; learning rate 

= 0.0001; epsilon = 10-5; steps = 4400; an adaptive moment 

estimation (ADAM) optimizer.  The stopping criterion was 

determined empirically by evaluating the training loss and the 

validation loss to avoid over-fitting. The architecture was 

implemented in Tensor Flow. The total training time for the 

20 slices of DCE-time series was approximately 8 hours on a 

NVIDIA GeForce GTX 1080 Ti GPU. We also implemented 

the network, which did not account for the patient-specific 

AIF. This is termed as (TK-net without AIF), and was trained 

in the same manner as the AIF-TK net, but did not include 

the AIF patch time series as an input.  
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Figure 1: The patient-specific AIFs (a) and post-contrast 

images (b) from the test set. As seen in (a), the AIFs depict a 

range of variability across patients.  

Figure 2: The proposed AIF-TK-net architecture. The network 

maps the input patch time series from the DCE images and the 

patient-specific (AIF broadcast to the dimension of the patch 

time series) to the output TK parameters. The global pathway 

has dilation factors of 2,4,8. Both the pathways consist of 4x4 

convolution blocks, followed by ReLU activation with 64 

features. The output of these pathways is fed to three pseudo-

fully connected layers being a 1x1 convolution.  

 



2.3 Evaluation: 
To evaluate the effect of including patient-specific AIFs 

in the network, we compared the performance of the proposed 

AIF-TK net against the TK-net without AIF.  The reference 

TK maps were obtained from non-linear ETK fitting via the 

L-BFGS iterative solver.  The local pathway was designed to 

extract smaller features and, therefore, is not dilated.  The 

global pathway extracts features throughout the image. We 

used 4x4 convolution.  A comparison was made on the test 

set containing five slices of DCE concentration vs. time series 

from different patients. Quantitative comparisons were 

performed in terms of Bland-Altman plots of the difference 

in the estimated TK maps and the reference TK maps. All the 

comparisons were made on manually selected regions of 

interest (ROI) that contained tumors within each slice.  

On the test data, we compared the average computation 

execution time to estimate the TK parameters with AIF-TK-

net and contrasted it against the execution time with the 

conventional L-BFGS solver. The forward pass 

implementation of the AIF-TK-net was both on the 1080 Ti 

GPU and a modern 32 core CPU.  The L-BFGS solver was 

implemented in MATLAB on the same 32 core CPU 

machine.  
 

3. RESULTS 

Figure 3 shows an exemplar result from the test set on a 

patient with a large glioblastoma tumor.  This compares the 

Ktrans, Kep, and vp maps from the estimated AIF-TK net, and 

the TK-net without AIF against the reference. A significant 

underestimation in the Ktrans and Kep maps were observed 

with the net without the AIF (see orange arrows in figure 3). 

In contrast, the AIF-TK net provided an improvement in the 

accuracy of estimating the Ktrans and Kep maps. The vp maps 

with the AIF-TK net showed only a subtle qualitative 

improvement over the net without AIF. With the AIF-TK-net, 

we qualitatively observed subtle smearing of vp maps at the 

boundaries of vessels and tumor tissue (see white arrow in 

figure 3). This is attributed to partial volume averaging as the 

network encourages similarity of TK parameters in local 

spatial neighborhoods.  

Figure 4 shows the Bland-Altman plots of the difference 

between estimated TK maps and the reference TK maps on 

all the tumor ROIs combined from the 5 test cases. The 

individual insets also show the mean + 1.96 (standard 

deviation) ( + 1.96 ()) of the difference in the estimated 

and reference maps. The AIF-TK-net showed a significant 

reduction in the systemic bias () in estimating Ktrans, 

compared to the net without AIF (0.0016 min-1 vs. 0.0107 

min-1).  Similar significant improvements were observed with 

bias reduction in estimating Kep with AIF-TK-net compared 

to the net without AIF (-0.00008 min-1 vs. 0.0057 min-1). 

Also, as depicted in figure 4, a reduction in uncertainty () in 

estimating the Ktrans, Kep maps were observed with the AIF-

TK net compared to the net without AIF. Finally, the error 

statistics in the vp maps did not demonstrate significant 

differences amongst the AIF-TK-net and the net without AIF. 

As the AIF-TK-net accounts for the patient-specific AIFs, the 

kinetic mapping in the vessels is expected to improve. 

However, due to implicit partial voluming with the net, we 

observe a subtle increase in the bias of vp with AIF-TK-net, 

as evident in the Bland-Altman plot of vp.  

Once trained, the AIF-TK net demonstrated a fast 

execution time to estimate the TK maps on the test DCE-time 

series data. The average mean processing times of the 

forward pass of the AIF-TK-net were 0.34 sec/slice on the 

GPU and less than a minute on the CPU. In contrast, the 

conventional L-BFGS solver took ~5 hours/slice on the CPU.  

 

 

 
4. DISCUSSION 

We have proposed, a patient-specific AIF and kinetic 

model-driven network to rapidly estimate the extended Tofts-

Kety kinetic model parameters in DCE-MRI. On brain tumor 

DCE datasets, we have demonstrated that by accounting for 

patient-specific AIF variations, the accuracy in estimating the 

Ktrans and Kep maps significantly improves. These AIF 

variations exist in DCE-MRI datasets particularly captured 

with high time resolution (<5 secs). Once trained, the 

proposed AIF-TK-net rapidly infers the TK maps of the order 

of 0.34 seconds/slice (on a GPU), or less than a minute (on a 

CPU) compared to traditional voxel-wise non-linear fitting 

(e.g., 5 hours/slice with L-BFGS solver on a CPU). The 

significant gains in the computational speed make the AIF-

TK-net an attractive option for use in recently proposed TK 

model-based reconstruction schemes from under-sampled k-
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Figure 3: Exemplar results from a glioblastoma tumor. Shown 

are the Ktrans, Kep, and vp maps from the reference (first row), 

the TK-net without AIF (second row), and the proposed AIF-

TK-net (third row). The fourth and fifth rows show the error in 

the estimates scaled up by a factor of 2.6 for better visualization. 

AIF-TK-net is robust to the significant under-estimation 

observed in the TK-net without AIF (see orange arrows in the 

Ktrans, Kep maps). Differences in the vp maps were not 

significant. Subtle partial volume averaging is observed in the 

AIF-TK-net on pixels interfacing tissue and vessels (e.g., see 

white arrow). 

 



space data (e.g., [6]), where the optimization iterates between 

data consistency, and TK estimation.  

The proposed AIF-TK net can be improved in several 

ways. It can be extended to account for nested TK models, 

where different spatial regions can be modeled by TK models 

of varying complexity. This can account for the partial 

volume effects we observe across vessel and tissue pixels, 

particularly in the vp maps. Second, the 2D convolutions can 

be extended to 3D convolutions to exploit similarities along 

the third dimension of the DCE time series. These extensions 

are scopes of our future work.  
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Figure 4: Bland-Altman plots of the difference between the reference TK maps and the estimated TK maps on all the tumor ROIs 

combined from the 5 test cases. The top row shows the plots for the TK-net without the AIF, and the bottom row shows the plots 

from the proposed AIF-TK-net. The insets show the mean + 1.96 (standard deviation) ( + 1.96 ()) of the difference in the 

estimated and reference maps. 

 


