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Abstract

Purpose: To introduce a blind compressed sensing (BCS) framework to accelerate multi-parameter MR

mapping, and demonstrate its feasibility in high-resolution, whole-brain T1ρ and T2 mapping.

Methods: BCS models the evolution of magnetization at every pixel as a sparse linear combination of

bases in a dictionary. Unlike compressed sensing (CS), the dictionary and the sparse coefficients are

jointly estimated from under-sampled data. Large number of non-orthogonal bases in BCS accounts for

more complex signals than low rank representations. The low degree of freedom of BCS, attributed to

sparse coefficients, translates to fewer artifacts at high acceleration factors(R).

Results: From 2D retrospective under-sampling experiments, the mean square errors in T1ρ and T2 maps

were observed to be within 0.1% up to R=10. BCS was observed to be more robust to patient-specific

motion as compared to other CS schemes and resulted in minimal degradation of parameter maps in the

presence of motion. Our results suggested that BCS can provide an acceleration factor of 8 in prospective

3D imaging with reasonable reconstructions.

Conclusion: BCS considerably reduces scan time for multi-parameter mapping of the whole brain with

minimal artifacts, and is more robust to motion-induced signal changes compared to current CS and PCA

based techniques.

Key words: T1ρ imaging, T2 imaging, dictionary learning, blind compressed sensing (BCS),

3D multi-parameter mapping
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INTRODUCTION

The quantification of multiple tissue parameters from MRI datasets is emerging as a powerful tool for

tissue characterization (1–8). Parameters such as proton density, longitudinal and transverse relaxation

times (denoted by T1 and T2), relaxation times in the rotating frame (T1ρ and T2ρ ), as well as diffusion

have been shown to be useful in diagnosis of various diseases including cerebral ischemia (9), Parkinson’s

disease (2–4), Alzheimer’s disease (2, 5, 7), epilepsy (7) multiple sclerosis (6, 7), edema (8), necrosis (8),

liver fibrosis (10), and intervertebral disc and cartilage degeneration (11–13). Although a single parameter

may be sensitive to a number of tissue properties of interest, it may not be specific. Acquiring additional

parameters can improve the specificity. The main bottleneck in the routine clinical use of multi-parameter

mapping is the long scan time associated with the acquisition of MR images with multiple weightings or

contrast values. In addition, long scan times are likely to result in motion induced artifacts in the data.

A common approach to reduce the scan time is to limit the number of weighted images from which the

parameters are estimated. However, this approach precludes the use of multi-exponential fitting methods,

limits the accuracy of fits, and restrict the dynamic range of estimated tissue parameters. Several researchers

have proposed to accelerate the acquisition of the weighted images using parallel imaging, model-based

compressed sensing, and low-rank signal modeling (14–22). The use of parallel imaging alone can only

provide moderate acceleration factors (14). Model-based compressed sensing methods rely on large dictio-

naries generated by Bloch equation simulations of all possible parameter combinations (23). A challenge

associated with this scheme is its vulnerability to patient motion, mainly because the dictionary basis func-

tions cannot account for motion induced signal changes. Another problem with the direct application of this

scheme to multi-parameter imaging is the rapid growth in the size of the dictionaries with the number of

parameters, which also results in increased complexity of the non-linear recovery algorithm. In this context,

methods such as k-t PCA and PSF models that estimate the basis functions from the measured data itself are

more desirable; the basis functions can model motion induced signal changes and thus provide improved

recovery of weighted images (22, 24).

The main contribution of this paper is to optimize the blind compressed sensing (BCS) scheme, which

was originally introduced for dynamic imaging (25), to accelerate multi-parameter mapping. The BCS

scheme represents the evolution of the magnetization of the pixels as a sparse linear combination of basis

functions in a finite dictionary V. Specifically, the Casorati matrix of the data X is modeled as X = UV.
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This model is ideally suited for multi-parameter mapping since there are finite number of distinct tissue types

in the specimen with unique parameter values. The proposed algorithm learns the dictionary basis functions,

as well as their sparse coefficients U, from the undersampled data by solving a constrained optimization

problem. The criterion is a linear combination of the data fidelity term and a sparsity promoting `1 norm

on the coefficient matrix U, subject to the Frobenius norm constraint on the dictionary V. Unlike methods

such as (26) that pre-estimate the dictionary, this approach provides robustness to patient-specific motion.

When the data is truly low-rank, the k-t PCA and PSF schemes (22, 24) requires very few basis functions to

represent it. However, in many cases (e.g. in the presence of motion, multiple tissue types, and simultaneous

mapping of multiple parameters), the rank of the dataset can be considerably higher; the larger degrees of

freedom will translate to a tradeoff between accuracy and artifacts, especially at high acceleration factors.

The BCS scheme uses a considerably larger dictionary of non-orthogonal basis functions, which provides

a richer representation of the data compared to the smaller dictionary of orthogonal basis functions used

in the k-t PCA and PSF schemes. The sparsity of the coefficients ensures that the number of active basis

functions at each voxel are considerably lower than the rank of the dataset. Since the basis functions used

at different spatial locations are different, the BCS scheme can be viewed as a locally low-rank scheme; the

appropriate basis functions (subspace) at each voxel are selected independently. Since the number of basis

functions required at each voxel is considerably lower than the global rank, the BCS scheme can provide

a richer representation with lower degrees of freedom; this translates to better trade-offs between accuracy

and achievable acceleration, especially in multi-parametric datasets with inter-frame motion.

The BCS algorithm (25) was inspired by the theoretical work on BCS by Gleichman et al. (27). The

work by Gleichman et. al. considers the same sensing matrix for all time frames, for simplicity of the

derivations. The proposed scheme uses different sensing matrices for different frames. The experiments in

(25, 28) clearly demonstrate the benefit of higher spatial and temporal incoherency offered by this sampling

strategy. In addition, the algorithm used in (27) is fundamentally different from our setting. The proposed

scheme is also motivated by and have similarities to the partial separable function (PSF) model introduced

by Liang et al. (16, 24, 29). However, there are several key differences between the PSF implementations

and the proposed scheme. For example, (24) uses the power factorization method to exploit the low-rank

structure of X. They jointly estimate U and V by alternating between two quadratic optimization schemes

involving data consistency terms. Our previous work shows that the BCS scheme provides improved re-

constructions than low-rank methods, including power-factorization (24, 25), mainly because of the richer
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dictionary and the lower degrees of freedom. Zhao et. al, assumes the data to be low-rank and pre-estimates

the orthogonal basis set V from low resolution data (29); they then estimate the coefficients using a sparsity

penalty on U. This approach can be seen as the first step of our iterative algorithm to jointly estimate U

and V. Specifically, the joint estimation of U and V will provide a richer dictionary with non-orthogonal

basis functions, which provide sparser coefficients than the orthogonal basis functions in (29). This is not

unexpected since extensive work in image processing have shown that over-complete and non-orthogonal

dictionaries/frames offer more compact representations than orthogonal basis sets. The comparisons in Fig.

4 demonstrate the performance improvement offered by the proposed joint estimation scheme.

We study the utility of the proposed BCS scheme to simultaneously recover T1ρ and T2 maps from

under-sampled weighted images. We rely on Cartesian sub-sampling schemes. The proposed scheme

yields reasonable estimates from the whole-brain for eight fold under-sampling over the fully-sampled setup,

thereby reducing the scan time to 20 min.

METHODS

In a multi-parameter imaging, the k-space data corresponding to different image contrasts are often sequen-

tially acquired by manipulating the sequence parameters (e.g. echo time, spin lock duration/amplitude and

flip angle). We denote the parametric dimension by p. The multi-coil under-sampled acquisition of such an

experiment is modeled as:

b(k, p) = A [γ(x, p)] + n(k, p), [1]

where b(k, t) represents the concatenated vector of the k− p measurements from all the coils. γ(x, p)(x =

(x1, y1)) denotes the underlying images pertaining to different contrasts; and n is additive noise. A is the

operator that models coil sensitivity and Fourier encoding on a specified k− p sampling trajectory.

Blind compressed sensing (BCS) formulation

The BCS model relies on the assumption that there exists a finite number of distinct tissue types with

unique relaxation parameter values within the specimen of interest; the evolution of the magnetization of

the tissue types as a function of p can be represented efficiently as a linear combination of basis functions

in a dictionary VR×N . Here R denotes the total number of basis functions in the dictionary and N is the
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total number of contrast weighted images in the dataset. The signal evolution at the pixel specified by x is

modeled as a sparse linear combination of basis functions vi(p); i = 1, ..R in V (Also see Fig 1.):

γ(x, p) =
R∑
i=1

ui(x)︸ ︷︷ ︸
sparse spatial weights

vi(p)︸ ︷︷ ︸
learned bases

. [2]

Using the Casorati matrix notation (16), the above equation can be rewritten as

ΓM×N =



γ(x1, p1) . γ(x1, pN )

. . .

. . .

γ(xM , p1) . γ(xM , pN )


= UM×R VR×N , [3]

where M is the total number of pixels in the image, ui(x) and vi(p) in Eq. [2] are respectively the ith

column and row entries of U,V. We formulate the joint recovery of U,V from under-sampled multi-coil

k − p measurements as the following constrained minimization problem:

{U∗,V∗} = arg min
U,V

‖A(UV)− b‖2F + λ‖U‖l1︸ ︷︷ ︸
C(U,V)

such that ‖V‖2F < 1. [4]

The first term in Eq. [4] ensures data consistency. The second term promotes sparsity on the spatial coeffi-

cients ui(x) by utilizing a convex `1 norm prior on U, which is given by ‖U‖l1 =
(∑M

i=1

∑r
j=1 |u(i, j)|

)
,

and λ is the regularization parameter. The optimization problem is constrained by imposing unit Frobenius

norm on the over-complete dictionary V, making the recovery problem well posed. Note that we are jointly

estimating the sparse coefficients U and the subject-specific dictionary V directly from the under-sampled

k − p data. Since the dictionary is subject-specific, this approach ensures that any deviations from the true

parametric encoding, such as subject motion, field inhomogeneity and chemical shift artifacts, are learned

by the basis functions. The number of active bases at a specified voxel depends on several factors that in-

clude partial volume effects, motion, and magnetization disturbances due to inhomogeneity artifacts. The

spatial weights ui(x) are encouraged to be sparse since we expect only a few tissue types to be active at

any specified voxel. The main difference of the proposed implementation from (25) is the use of an efficient

algorithm and the extension to multi-coil formulation which enables better recovery at high acceleration

rates.
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Optimization Algorithm

We majorize an approximation of the `1 penalty on U in (4) as ‖U‖`1 ≈ minL
β
2 ‖U−L‖2 + ‖L‖`1 , where

L is an auxiliary variable. This approximation becomes exact as β →∞. When β is small, the majorization

is equivalent to the Frobenius norm on U (30). We use a variable splitting and augmented Lagrangian

optimization scheme to enforce the constraint in Eq. [4]. Thus, the optimization problem corresponds to

{U∗,V∗} = arg min
U,V

min
Q,L
‖A(UV)− b‖2F +

β

2
‖U− L‖2 + λ‖L‖l1 such that ‖Q‖2F < 1,V = Q [5]

Here, Q is the auxiliary variable for V. The constraint V = Q is enforced by adding the augmented

Lagrangian term α
2 ‖V−Q‖2+〈Λ, (V −Q)〉 to the above cost function. Here, Λ is the Lagrange multiplier

term that will enforce the constraint. These simplifications enable us to decouple the optimization problem

in (4) into different sub-problems. We use an alternating strategy to solve for the variables U,V,Q and L.

All of these sub-problems are solved independently in an efficient fashion as described below, assuming the

other variables to be fixed.

Update on L: The sub-problem can be solved analytically as

Ln+1 =
U
|Un|

(
|Un| −

1
β

)
+

[6]

where ‘+’ represents the soft thresholding operator defined as (τ)+ = max{0, τ} and β is the penalty

parameter.

Update on U: The sub-problem on U, assuming the other variables to be fixed, can be written as

Un+1 = arg min
U

‖A(UnVn)− b‖22 +
λβ

2
‖U− Ln+1‖22 [7]

Since it is a quadratic problem, we solve it using a conjugate gradient (CG) algorithm. Here, Un, Vn and

Ln are the variables at the nth iteration.

Update on Q: This sub-problem, assuming the other variables to be fixed, is solved using a projection

scheme as specified in Eq. [8].

Qn+1 =

 Vn when ‖Vn‖2F 6 1

1
‖Vn‖F Vn else

[8]
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Note that Qn is obtained by scaling Vn so that the Frobenius norm is unity.

Update on V: Minimizing the cost function with respect to V, assuming other variables to be constant yields

Vn+1 = ‖A(Un+1Vn)− b‖2F + < Λn,Vn −Qn+1 > +
α

2
‖Vn−Qn+1‖2F . [9]

The quadratic problem is solved using a CG algorithm. This usually takes a few steps to converge. We use

the steepest ascent method to update the Lagrange multiplier at each iteration

Λn+1 = Λn + α (Vn+1 −Qn+1) [10]

The convergence of the algorithm depends on α and β parameters. Since we use the augmented La-

grangian framework for enforcing constraint on the dictionary, it is not necessary for α to tend to∞ for the

constraint to hold, allowing faster convergence. However, α is progressively updated every iteration to im-

prove the convergence. The inner loop is terminated once the constraint is satisfied, meaning the difference

between V and Q is less than a threshold of 10−5. In contrast, for the majorization to well approximate the

`p penalty, β needs to be a high value. As discussed earlier, the majorization is only exact when β → ∞.

Since the condition number of the U sub-problem is dependent on β, convergence of the algorithm will

be slow at high values of β. In addition, the algorithm may converge to a local minimum if it is directly

initialized with a large β value. Hence, we use a continuation on β, where we initialize it with a small value

and increment it gradually when the cost in Eq. [4] stagnates to a threshold level of 10−3. Our previous

work shows that this strategy significantly minimizes the convergence of the algorithm to local minima (25).

The outer loop is terminated when constraints for sparse approximation are achieved; in other words, when

the cost function given in Eq. [4] converges to a threshold value of 10−6.

The pseudo-code of the algorithm is shown below.
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Algorithm : BCS(A,b, λ)

Input : b→ k− space measurements

Initializeβ > 0

while |Cn − Cn−1| > 10−5 Cn

do



Initializeα > 0

while ‖V −Q‖2 > 10−5

do



Update L : Shrinkage Step← Eq.[6]

Update U : Quadratic sub− problem← Eq.[7]

Update Q : Projection step← Eq.[8]

Update V : Quadratic sub− problem← Eq.[9]

Update Λ : Lagrange multiplier update← Eq.[10]

α = 5 ∗ α : Continuation parameter update

if |Cn − Cn−1| < 10−3 Cn

then
{
β = 10 ∗ β : Continuation parameter update

return (U,V)

Data Acquisition

To demonstrate the utility of the proposed BCS scheme in recovering T1ρ, T2 and S0 parameters, healthy

volunteers were scanned on a Siemens 3T Trio scanner (Siemens Healthcare, Erlangen, Germany) using

a vendor provided 12-channel phased array coil. Written informed consent was obtained and the study

was approved by the Institutional Review Board. The coil sensitivity maps were obtained using the Walsh

method for coil map estimation (31).

To test the feasibility of the algorithm and to optimize the parameters, we first acquired a single-slice

fully-sampled axial 2D dataset using a turbo spin echo (TSE) sequence, combined with T1ρ preparatory

pulses (32) and T2 preparatory pulses (33). Scan parameters were turbo factor (TF) of 8, matrix size =

128x128, FOV= 22x22cm2, TR=2500ms, slice thickness =5mm, B1 spin lock frequency=330Hz, and band-

width= 130Hz/pixel. T1ρ and T2 weighted images were obtained by changing the duration of the T1ρ

(referred as spin lock time) and duration of the T2 preparation pulses (referred as echo time) respectively.

The data was collected for 12 equi-spaced spin lock times (TSLs) and 12 equi-spaced echo times (TEs)
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values, both ranging from 10 ms to 120 ms. This provided a total of 24 parametric measurements. The scan

time for this dataset was 16 min. Note that five or six spin lock times are sufficient for T1ρ estimation using

a single exponential fit. However, our main motivation is the future use of this scheme for multi-parametric

mapping (e.g. joint imaging of T1ρ, T2, T1ρ dispersion imaging, as well as time-resolved parametric map-

ping). The proposed scheme will prove very useful in these settings. Moreover, larger number of parametric

images are essential for more sophisticated models such as multi-exponential model to account for partial

volume issues.

To demonstrate the utility of the approach in accelerated 3-D imaging, we acquired a prospective 3D

dataset using a segmented 3D gradient echo sequence based on the 3D MAPSS approach (34). Scan parame-

ters were FOV = 22x22x22cm3, matrix size = 128x128x128, 64 lines/segments, TR/TE=5.6/2.53ms, recov-

ery time=1500ms, resolution 1.7mm isotropic, bandwidth= 260Hz/pixel, B1 spin lock frequency =330Hz

and constant flip angle=10o. The readout (frequency encode) direction was (kx), which enabled us to choose

an arbitrary sampling pattern. TEs and TSLs of the T2 and T1ρ preparation pulses were varied uniformly

from 10 to 100ms providing 10 measurements of each. Scan time of the prospective 3D dataset was 20 min.

To be consistent with the 2D dataset the phase encoding plane (phase encode, slice encode) was oriented

along the axial (ky − kz) plane. We perform the recovery of each y − z slice independently.

Optimization & validation of the algorithm using fully sampled 2-D acquisition

We used the fully sampled 2-D dataset to determine an optimal sampling pattern, optimize the parameters,

and compare with other algorithms.

Determination of a sampling scheme

To choose an optimal sampling scheme that will work well with the multi-channel BCS scheme, we retro-

spectively under-sample the 2-D dataset using two different under-sampling schemes shown in Fig 2.(a-b).

Both patterns correspond to an 8 fold under-sampling. Fig. 2(a) shows the pseudo-random variable density

trajectory which over-samples the center of k-space. The sampling scheme 2 as shown in Fig. 2(b) is a

combination of a 2x2 uniform Cartesian under-sampling pattern and a pseudo-random variable density pat-

tern as in Fig. 2(a). Acceleration factor of 6,8,10 and 12 were achieved as 4- fold uniform under-sampling

and 1.5, 2, 2.5 and 3 fold random variable density under-sampling respectively. The 2x2 uniform sampling
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pattern for different frames is randomly integer shifted in the range [x, y] = [−1, 1]× [−1, 1] as done in (35)

to achieve more incoherency. This sampling scheme may be replaced with Poisson disc sampling (36). We

compare the reconstructions provided by the proposed algorithm from the dataset under-sampled using both

schemes.

Details of algorithms & determination of their parameters

We compare the BCS algorithm against compressed sensing (CS) (26) and k-t principal component analysis

(PCA) (22) methods. A training dataset of 10000 exponentials is generated assuming the exponential model

in Eq. [12] for the CS scheme. A dictionary of 1000 atoms is learned from the training dataset using k-

SVD algorithm (37). Specifically, we vary the T2 and T1ρ values from 1ms to 300ms in steps of 3. The

learned dictionary is then optimized for signal approximation with at most K atoms. The sparsity value K

is chosen as 7 based on the model fit with respect to fully sampled dataset. The dictionary learned from the

training phase is used in the reconstruction. The data is reconstructed using an iterative procedure, which

iterates between obtaining the K-term estimate of the signal using orthogonal matching pursuit (OMP)

algorithm and minimizing data consistency as described in (26). kt-PCA is implemented as a two step

approach where the first step is to estimate the orthogonal basis functions from the training data. The

basis functions are estimated from the center 9x9 grid of the fully-sampled k-space data using PCA. In the

second step, the estimated basis functions are used in reconstruction of the data. We also compare the BCS

algorithm with the kt-PCA method with `1 sparsity constraint enforced on the coefficients. The algorithms

are implemented in MATLAB on a quad core linux machine with a NVDIA Tesla graphical processing unit.

The regularization parameters of all the algorithms were chosen such that the error between reconstructions

and the fully-sampled data specified by

MSE =
(
‖Γrecon − Γorig‖2F

‖Γorig‖2F

)
[11]

is minimized. We iterate all algorithms until convergence (until the change in the criterion/cost function is

less than a threshold which is 10e-6). With this setting, kt- PCA takes about 10-15 iterations, kt-PCA with `1

constraint takes 7-8 iterations, BCS takes 60-70 iterations while CS takes around 100 iterations to converge.

We also compare the BCS and kt-PCA methods for their compression capabilities. The 2D dataset

with and without motion is represented using different number of basis functions in case of kt-PCA and
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different regularization parameters (and equivalently different sparsities) in case of BCS. For BCS model we

considered dictionary Vus estimated from 6 fold under-sampled data. To determine the model representation

at different compression factors we solved for the model coefficients U using the following equation:

Ûλ = arg min
U
‖Γ−UVus‖22 + λ‖U‖`1 [12]

We varied the range of λ and minimized the above problem to control the sparsity levels of Ûλ, and hence

the compression capabilities. A threshold of 0.1 % was applied on Ûλ to shrink the coefficients that were

very small and were not fully decayed to zero during the above `1 minimization problem. The model

approximation error is given by ‖Γ−UλVus‖2F .

Comparison of the algorithms

We estimate the parameters S0, T1ρ and T2 by fitting the mono-exponential model

M(p) = S0 . exp
(
−TE(c)
T2

)
. exp

(
−TSL(c)
T1ρ

)
[13]

to the reconstructed images on a pixel by pixel basis using a linear least-squares algorithm.The mean square

error (MSE) of the parameter maps obtained from the BCS, CS and kt-PCA algorithms are compared to

the ones obtained from the fully-sampled data. We mask the reconstructed images before computing the

parameter maps to limit our evaluation of T1ρ, T2 and S0 to the brain tissue.

The performance of the reconstruction scheme at higher acceleration was assessed by retrospectively

under-sampling the dataset at acceleration factors of 6, 8, 10, 12 & 15 using the sampling scheme shown in

Fig. 2(b). To determine the robustness of the proposed scheme to motion, we constructed a simulated dataset

with inter-frame motion by adding translational motion resulting in 1 pixel shift and rotational motion of

1 degree to frames 16-21 of the 2D dataset, out of 24 frames. The reconstructed images are aligned to

compensate for inter frame motion, prior to fitting. To demonstrate the advantage of acquiring multiple

parameters over single parameter, we compared the T1ρ maps obtained by applying BCS, kt-PCA and CS

schemes on the combined dataset (T1ρ+ T2) and the T1ρ only dataset.
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Validation of the BCS algorithm using prospective 3D acquisition

The prospectively under sampled 3-D dataset is recovered using the BCS scheme. The dataset was under-

sampled on a Cartesian grid with a acceleration factor of R=8 using the under-sampling scheme 2. Each of

the 128 slices in the dataset are recovered independently using BCS. The parameter maps are estimated from

the pixels by fitting the mono-exponential model to the data. The MSE metric could not be used for the 3D

experiments as the fully-sampled ground truth was not available. Hence, we determine the regularization

parameter λ using the L-curve strategy (38).

RESULTS

Fully sampled 2D Acquisition

The comparisons of the two under-sampling patterns at acceleration factor of 8 is shown in Fig. 2. The MSE

values and the error images in third column show that sampling scheme 2 (shown in Fig. 2(b)) provides

better reconstructions. Sampling scheme 2 samples outer k-space more than sampling scheme 1 (shown

in Fig. 2(a)), which reduces blurring of the high frequency edges. In other words, the sampling scheme

2 is both randomly and uniformly distributed in k-space making it suitable for multi-channel compressed

sensing applications. The aliasing introduced by the 2x2 uniform grid in sampling scheme 2 is resolved

using information from multiple coils. Using different sampling patterns for different frames increases

incoherency and thus helps in better reconstructions. We use sampling scheme 2 for all the subsequent

experiments.

We demonstrate the choice of the parameters in BCS and k-t PCA schemes in Fig. 3 using 8 fold

retrospectively under sampled data. The comparisons were done in two regimes: one where the subject was

still, and one with head motion during part of the scan. In Fig. 3(a)&(b), we show the model approximation

error as a function of number of non-zero coefficients per pixel while representing the 2D dataset without

and with motion for BCS and kt-PCA using learned basis functions respectively. In case of BCS scheme, the

basis functions learned from BCS reconstruction of 6-fold under-sampled data were used whereas in case of

kt-PCA, basis functions estimated from center k-space of the fully sampled data were used. We observe that

BCS provides better compression capabilities than kt-PCA. In other words, the model fitting error in BCS

is lower with less number of non-zero coefficients per pixel as compared to kt-PCA. We observe from Fig.
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3(c)&(d) that the better signal representation offered by BCS translates to better reconstruction. Specifically,

the optimal number of non-zero coefficients that yield minimum reconstruction errors in the kt-PCA model

(10 in case without motion and 14 for case with motion) is considerably higher than that of BCS model (≈4

in case without motion and ≈5 in case with motion).

In Fig. 4, we compare the performance of BCS against k-t PCA scheme with and without sparsity

constraint and CS schemes for different acceleration factors without motion (right) and in the presence of

motion (left). We observe that BCS is capable of providing reconstructions with lower errors, compared

with CS and k-t PCA schemes with and without sparsity constraint. The better performance of BCS in

cases without and with motion can be attributed to the richer dictionary and lower degrees of freedom over

other methods. The `1 norm on the coefficients and Frobenius norm constraint on the dictionary attenuate

the insignificant basis functions which model the artifacts and noise as shown in Fig. 5(a) and thereby

minimize noise amplification. In contrast, since the model order (number of non-zero coefficients) in kt-

PCA without sparsity constraint is fixed a priori, basis functions modeling noise are also learned, especially

in the case with motion. This is demonstrated in Fig. 5(c). Imposing a sparsity constraint on U in kt-

PCA method improves the results over kt-PCA without regularization. This scheme can be seen as the first

iteration of the BCS scheme. The results in the paper clearly demonstrate the benefit in re-estimating the

basis functions. Specifically, the BCS scheme enables the learning of non-orthogonal basis functions, which

provide sparser coefficients. The CS method on the other hand exhibited motion artifacts as the dictionary

is learned from the data model which does not contain signal prototypes that account for patient-specific

motion fluctuations. The comparison of T1ρ and T2 parameter maps at acceleration factor of 8 are shown in

Fig. 6. We observe that BCS provides superior reconstructions which translate into better parameter maps as

compared to other two schemes in both with and without motion datasets. Fig. 7 shows the parameter maps

for different acceleration factors. Acceleration factors up to 15 were achieved with minimal degradation.

All the schemes yield better T1ρ maps in case of the combined (T1ρ + T2) dataset as compared to the only

T1ρ dataset as seen in Fig. 8. In addition, we observe that BCS gives better performance than other schemes,

thus confirming that combining T1ρ and T2 datasets does not affect the reconstructions, instead it enables to

achieve higher acceleration and improves the specificity of T1ρ.
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Prospective 3D Acquisition

The optimal regularization parameter is chosen using the L- curve method as shown in Fig. 9. The λ value

of 0.07 is then used to recover all the slices. The parameter maps for the prospectively under-sampled 3D

dataset recovered using the BCS scheme are shown in Fig. 10. These results demonstrate that the BCS

scheme yields good parameter maps with reasonable image quality. The acceleration factor of R=8 enables

us to obtain reliable T1ρ, T2 and S0 estimates from the entire brain within a reasonable scan time (20 min).

DISCUSSION

We have introduced a blind compressed sensing framework to accelerate multi-parameter mapping of the

brain. The fundamental difference between CS schemes and the proposed framework is that BCS learns

a dictionary to represent the signal, along with the sparse coefficients from the under-sampled data. This

approach enables the proposed scheme to account for motion-induced signal variations. Since the number

of different tissue types in the specimen is finite, this approach also enables use of smaller dictionaries,

resulting in a computationally efficient algorithm. The main difference of the proposed scheme vs. k-t PCA

scheme is the non-orthogonality of the basis functions and the sparsity of the coefficients. The richer model

and the fewer degrees of freedom due to the sparsity of the coefficients translate to lower artifacts at high

acceleration factors.

Since the kt-PCA basis functions are estimated from the center 9x9 kspace of the fully sampled data,

it does not exploit the redundancy due to parallel MRI. The kt-PCA performance may be further improved

by a pre-reconstruction step, where the missing k-space data is interpolated from the known samples using

GRAPPA (39) or SPIRiT (40), prior to estimating the basis functions. However, no such pre-reconstruction

is necessary in BCS since the dictionary is updated iteratively with the coefficients in the reconstruction

process. The kt-PCA reconstructions, specially in presence of motion can be improved by using the model

consistency condition (MOCCO) technique (41) introduced recently. Such a model consistency relaxation

could also be realized with the BCS model, which is yet to explored.

Our comparisons with kt-PCA and CS schemes in the case of subjects experiencing head motion shows

that BCS is more robust to motion. This behavior can be attributed to the ability of the BCS scheme to

learn complex basis functions that capture the motion-induced signal variations. The ability to be robust to

motion induced signal variations is especially important in high-resolution whole-brain parameter mapping
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experiments, where the acquisition time can be significant.

Based on our work that combined low-rank and spatial smoothness priors (28), we observed that the

use of spatial smoothness priors along with low-rank priors as in Zhao et. al, ISMRM, 2012 can provide

better reconstructions. While spatial smoothness priors can be additionally included with BCS to improve

performance, this is beyond the scope of this paper.

The proposed method can only compensate for inter-frame motion. We correct for the motion using

registration of the images in the time series, prior to estimation of the parameter maps. An alternative to

this approach is the joint estimation of motion and the low-rank dataset as in (42). The improvement in the

results comes from superior reconstruction of the image series, which translates into good quality parameter

maps.

The quality of the reconstructions depends on the regularization parameter λ. We used the L-curve

method to optimize λ. We observed that the value of λ did not vary much across different datasets acquired

with the same protocol. Therefore, in the practical setting, once the λ is tuned for one dataset, it could be

used to recover other datasets that are acquired using the same protocol. In order for the majorize-minimize

algorithm to converge, β should tend to infinity, and convergence of the algorithm is slow at higher values

of β. Thus the continuation method plays a significant role in providing faster convergence. Currently, the

reconstruction time for one slice is about 40 min on the GPU. We observed that the CG steps required to

solve the quadratic sub-problems are time consuming. These CG steps can be avoided by additional variable

splitting in the data consistency term as shown in (43, 44), which is a subject of further investigation.

The proposed scheme can be extended in several directions. First, in the current setting, we reconstruct

the 3D data slice by slice, but the algorithm can be further modified to reconstruct the entire 3D data at once,

thus exploiting the redundancies across slices. However, this will be computationally expensive. Second,

additional constraints such as total variation penalty on the coefficients and sparsity of the basis functions

(45) can be added to further improve the results. Third, spatial patches can be used to construct dictionaries

to exploit the redundancies in the spatial domain (46, 47). Lastly, we use a single exponential model to

estimate the parameter maps. However several other models like multi-exponential model (48) which will

accommodate for partial volume effects or a Bloch equation simulation based approach can be used for

parameter fitting. Since, these extensions are beyond the scope of this paper, we plan to investigate these in

future.
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CONCLUSION

We introduced a blind compressed sensing framework, which learns an over-complete dictionary and sparse

coefficients from under-sampled data, to accelerate MR multi-parameter brain mapping. The proposed

scheme yields reasonable parameter estimates at high acceleration factors, thereby considerably reducing

scan time. The robustness of the BCS scheme to motion makes it well suited for multi-parameter mapping in

a setting with high probability of patient-specific motion or in a dynamic setting like in cardiac applications.
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Legends

Fig. 1: BCS model representation: The model representation of the multi-parameter signal of a single brain

slice with 24 parametric measurements (12 TEs and 12 TSLs) is shown above. The signal Γ is decomposed

as a linear combination of Spatial weights ui(x) (x are the spatial locations (pixels)) and temporal basis

functions in vi(p) (p are the parametric measurements). We observe that only 3-4 coefficients per pixel are

sufficient to represent the data. The Frobenius norm attenuates the insignificant basis functions.

Fig. 2: Choice of sampling trajectories: The sampling patterns for a specific frame for the two choices

of sampling schemes are shown in (a) and (b), respectively. The results are shown for an under-sampling

factor of 8. The first sampling scheme (shown in (a)) is a pseudo-random variable density pattern, while

the second sampling scheme (shown in (b)) is a combination of a uniform 2x2 under-sampling pattern and

a pseudo-random variable density pattern. The second column shows one of the weighted images of the

reconstructed data using BCS. As seen from the error images in third column, sampling scheme 2 yields

better performance. Note that the sampling patterns are randomized over different parameter values to

increase incoherency.

Fig. 3: Comparison of BCS and kt-PCA model representation: (a) and (b) show the model approxima-

tion error against the number of non-zero coefficients per pixel of BCS and kt-PCA without and with motion

respectively. (c) and (d) show the reconstruction error against the average number of non-zero model coef-

ficients per pixel of BCS and kt-PCA models on the 2D dataset without and with motion respectively. We

observe that BCS gives better reconstructions with less number of non-zero model coefficients than kt-PCA

both in case of with and without motion. In other words the degree of freedom of BCS is less than that of

kt-PCA. BCS model gives better compression than kt-PCA model as seen from (a) & (b). Note: For (a)&(b),

the basis functions in case of BCS were estimated from 6 fold under-sampled data and the basis functions

of kt-PCA were estimated from center of k-space of the fully sampled data.

Fig. 4: Comparison of the proposed BCS scheme with different reconstruction schemes on retrospec-

tively under-sampled 2D dataset: The results for dataset without and with motion are shown in (i) and (ii)

respectively. The plots for reconstruction error, S0 map error, T1ρ map error and T2 map error for BCS,

CS, kt-PCA and kt-CPA with `1 sparsity schemes are shown in (a-d). It is observed that the BCS scheme

provides better recovery in both cases. The images in (g-j) show one weighted image of the reconstructed

dataset at acceleration factor of 8 using the 4 different schemes. We observe that the CS and kt-PCA schemes
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were sensitive to motion and resulted in spatial blurring as seen in (ii)- (h-j), which is also evident from the

error images.

Fig. 5: Model Coefficients and dictionary basis functions for the 2D data with motion: Few spatial

coefficients ui(x) and their corresponding basis functions vi(p) for BCS, CS and kt-PCA schemes are shown

in (a-c) respectively. The product entries ui(x)vi(p) are sorted according to Frobenius norm and first 14

entries are shown here. Since the Frobenius norm constraint attenuates the insignificant basis functions BCS

reconstructions have less noise amplification whereas the basis functions estimated using kt-PCA scheme

are noisy.

Fig. 6: T1ρ and T2 parameter maps for retrospectively under-sampled 2D dataset: The T1ρ and T2

parameter maps obtained using BCS, CS and kt-PCA schemes on the 2D dataset with and without motion

are shown in (i) and (ii) respectively. The maps are obtained at acceleration factor of 8. We observe that

BCS scheme performs better than CS and kt-PCA schemes in both cases with and without motion. The

noise in reconstructions using the kt-PCA and CS schemes propagates to the parameter maps and hence the

degradation is higher in case of kt-PCA and CS as compared to BCS.

Fig. 7: Parameter maps of a retrospectively under-sampled 2D dataset at different acceleration factors:

S0, T1ρ and T2 parameter maps (a-c) at acceleration factors R=1, 6, 8, 10, 12 and, 15 are shown in (i-vi). We

observe reasonable reconstructions for acceleration factors up to 15 with minimal degradation in contrast.

Fig. 8: Comparison of T1ρ maps errors obtained from reconstructions of combined (T1ρ + T2) dataset

and the T1ρ only dataset: The T1ρmaps errors at different accelerations for all the schemes on the combined

dataset (solid lines) and only T1ρ dataset (dotted lines) are shown. The plot on left shows comparisons for

the datasets without any motion and the plot on the right shows comparisons for datasets with motion. We

observe in both cases that BCS performs better than CS and kt-PCA schemes. In other words combining the

datasets improves the reconstructions.

Fig. 9: Choice of regularization parameter λ : The λ parameter was optimized using the L- curve

strategy (38). We change λ and plot the data consistency error against the smoothness penalty. λ value of

0.07 was chosen as the regularizing parameter for the 3D dataset.

Fig. 10: Parameter maps for 3D prospective under-sampled data at R=8: Axial, Coronal and Sagittal

T1ρ and T2 parameter maps are shown in (i)-(ii). With the acceleration of R=8, the scan time was reduced

to 20 min. Note: All 128 slices were processed slice by slice to reconstruct the 3D parameter maps
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Figure 1: BCS model representation: The model representation of the multi-parameter signal of a single
brain slice with 24 parametric measurements (12 TEs and 12 TSLs) is shown above. The signal Γ is decom-
posed as a linear combination of Spatial weights ui(x) (x are the spatial locations (pixels)) and temporal
basis functions in vi(p) (p are the parametric measurements). We observe that only 3-4 coefficients per pixel
are sufficient to represent the data. The Frobenius norm attenuates the insignificant basis functions.
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Figure 2: Choice of sampling trajectories: The sampling patterns for a specific frame for the two choices
of sampling schemes are shown in (a) and (b), respectively. The results are shown for an under-sampling
factor of 8. The first sampling scheme (shown in (a)) is a pseudo-random variable density pattern, while
the second sampling scheme (shown in (b)) is a combination of a uniform 2x2 under-sampling pattern and
a pseudo-random variable density pattern. The second column shows one of the weighted images of the
reconstructed data using BCS. As seen from the error images in third column, sampling scheme 2 yields
better performance. Note that the sampling patterns are randomized over different parameter values to
increase incoherency.
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Figure 3: Comparison of BCS and kt-PCA model representation: (a) and (b) show the model approximation
error against the number of non-zero coefficients per pixel of BCS and kt-PCA without and with motion
respectively. (c) and (d) show the reconstruction error against the average number of non-zero model coef-
ficients per pixel of BCS and kt-PCA models on the 2D dataset without and with motion respectively. We
observe that BCS gives better reconstructions with less number of non-zero model coefficients than kt-PCA
both in case of with and without motion. In other words the degree of freedom of BCS is less than that of
kt-PCA. BCS model gives better compression than kt-PCA model as seen from (a) & (b). Note: For (a)&(b),
the basis functions in case of BCS were estimated from 6 fold under-sampled data and the basis functions
of kt-PCA were estimated from center of k-space of the fully sampled data.
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Figure 4: Comparison of the proposed BCS scheme with different reconstruction schemes on retrospec-
tively under-sampled 2D dataset: The results for dataset without and with motion are shown in (i) and (ii)
respectively. The plots for reconstruction error, S0 map error, T1ρ map error and T2 map error for BCS,
CS, kt-PCA and kt-CPA with `1 sparsity schemes are shown in (a-d). It is observed that the BCS scheme
provides better recovery in both cases. The images in (g-j) show one weighted image of the reconstructed
dataset at acceleration factor of 8 using the 4 different schemes. We observe that the CS and kt-PCA schemes
were sensitive to motion and resulted in spatial blurring as seen in (ii)- (h-j), which is also evident from the
error images.
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Figure 5: Model Coefficients and dictionary basis functions for the 2D data with motion: Few spatial
coefficients ui(x) and their corresponding basis functions vi(p) for BCS, CS and kt-PCA schemes are
shown in a-c respectively. The product entries ui(x)vi(p) are sorted according to Frobenius norm and first 14
entries are shown here. Since the Frobenius norm constraint attenuates the insignificant basis functions BCS
reconstructions have less noise amplification whereas the basis functions estimated using kt-PCA scheme
are noisy.
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Figure 6: T1ρ and T2 parameter maps for retrospectively under-sampled 2D dataset: The T1ρ and T2 pa-
rameter maps obtained using BCS, CS and kt-PCA schemes on the 2D dataset with and without motion
are shown in (i) and (ii) respectively. The maps are obtained at acceleration factor of 8. We observe that
BCS scheme performs better than CS and kt-PCA schemes in both cases with and without motion. The
noise in reconstructions using the kt-PCA and CS schemes propagates to the parameter maps and hence the
degradation is higher in case of kt-PCA and CS as compared to BCS.
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Figure 7: Parameter maps of a retrospectively under-sampled 2D dataset at different acceleration factors:
S0, T1ρ and T2 parameter maps (a-c) at acceleration factors R=1, 6, 8, 10, 12 and, 15 are shown in (i-vi). We
observe reasonable reconstructions for acceleration factors up to 15 with minimal degradation in contrast.
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Figure 8: Comparison of T1ρ maps errors obtained from reconstructions of combined (T1ρ + T2) dataset
and the T1ρ only dataset: The T1ρmaps errors at different accelerations for all the schemes on the combined
dataset (solid lines) and only T1ρ dataset (dotted lines) are shown. The plot on left shows comparisons for
the datasets without any motion and the plot on the right shows comparisons for datasets with motion. We
observe in both cases that BCS performs better than CS and kt-PCA schemes. In other words combining the
datasets improves the reconstructions.
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Figure 9: Choice of regularization parameter λ : The λ parameter was optimized using the L- curve strategy
(38). We change λ and plot the data consistency error against the smoothness penalty. λ value of 0.07 was
chosen as the regularizing parameter for the 3D dataset.
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Figure 10: Parameter maps for 3D prospective under-sampled data at R=8: Axial, Coronal and Sagittal T1ρ
and T2 parameter maps are shown in (i)-(ii). With the acceleration of R=8, the scan time was reduced to 20
min. Note: All 128 slices were processed slice by slice to reconstruct the 3D parameter maps
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