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Motion and k-space
k-space acquired in time

The sum in the Fourier Transform implies that motion at any 
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Non-rigid motion
• Most physiological motion is non-rigid 

• Not straightforward to directly correct in the k-space

Royuela et al., MRM 2015
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Motion corrected reconstruction: early approaches

Generalized Reconstruction by Inversion of Coupled Systems (GRICS) applied to free-breathing MRI 
 

F. Odille1,2, P-A. Vuissoz1,2, P-Y. Marie3, and J. Felblinger1,2 
1IADI, Nancy University, Nancy, France, 2INSERM ERI 13, Nancy, France, 3Department of Nuclear Medicine, University Hospital Nancy, Nancy, France 

 
INTRODUCTION 
The reconstruction technique in (1) allows correction for artifacts caused by arbitrary motion (spatial encoding errors). Practical implementation is 
very difficult as the algorithm requires prior knowledge about motion at each MR acquisition time. The proposed framework involves building an 
optimal motion model for motion compensated reconstruction, by solving both problems simultaneously (coupled systems formulation). 

METHODS 
Motion compensated reconstruction is an inverse problem, described by an encoding operator E 
modeling the acquisition pipeline (see Fig.1): 
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Inversion of [1] requires knowledge of spatial transformation operators 
nt

T at each acquisition time nt . 

ntT may be given by a motion predictive model. Let uδ be the displacement error fields at each 

acquisition time. Assuming that MR signal is conserved during the acquisition process (which is 
expressed locally by the optical flow equation), it can be shown that these motion prediction errors 
propagate linearly in the algorithm [1], that is, they induce a reconstruction residue of the form: 

uRδε =  (see Fig.2),  [2] 
It is possible to invert Eq. [2] in order to find better displacement field estimates, minimizing the 
reconstruction residue ε . However Eq. [2] contains too many unknowns for practical implementation. 
To overcome this problem, a motion model is introduced to reduce the number of parameters, although 
allowing locally free deformations (non rigid or affine motion). This model involves constraining the 
time dimension by linear combinations of certain input signals [ ])()...(1 tStS K  provided by external 
sensors (bellows, ECG…) or navigator echoes. The model is described by K coefficient maps 
[ ])()...(1 rr Kαα , such that displacement fields are estimated by : 
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Then, using [1], [2], [3], reconstruction can be reformulated as 2 coupled inverse problems (see Fig. 2): 

 (motion compensated reconstruction) 

 (motion model optimization) [4] 

A multiresolution fixed point method is proposed for solving system [4], with an initial model comprised of zero coefficients. The algorithm was 
validated on real data acquired with a 1.5 T MR scanner (Signa, GEHC, WI). Physiological signals (pneumatic belts and ECG) were acquired with a 
dedicated system presented in (3). We used 4 input signals in 2D reconstructions (2 respiratory belts + their derivatives), and 1 input in 3D (1 belt). 

RESULTS 
Results have been demonstrated in data from a moving 
phantom and 6 volunteers, acquired in free breathing (17 pulse 
sequences in total), including 2D and 3D cardiac/abdominal 
scans. Reconstructed image quality was close to that obtained 
in breath hold (see example in Fig.3). Practical convergence 
was assessed by monitoring residue evolution (decrease) over 
iterations (see Fig.4). Time needed for reconstruction ranged 
from 3 min (256x256 image) to 210 min  (256x256x32 
volume) with Matlab® single-threaded code. 

CONCLUSION 
The GRICS framework overcomes many limitations of 
existing methods, as it allows correction for artifacts caused 
by elastic motion, which makes it suitable for cardiac or 
abdominal imaging. The multiresolution scheme allows 
accounting for large displacements. The method is completely 
autocalibrated, with regard to multiple coil acquisition 
(determination of coil sensitivities) and to motion correction 
(determination of model coefficients). 

REFERENCES 
1.Batchelor et al. [2005] MRM. 54:1273-1280 2.Pruessmann et al. [2001] MRM. 46:638-651 3.Odille et al. [2007] IEEE TBME. 54:630-640 

Fig.4: Evolution of the reconstruction residue over iterations, at each resolution level, in 9 
reconstructions (2D , 256x256 matrix experiments). 

Fig.3: Free-breathing: standard reconstruction (a), GRICS  (b) ; breathhold (c) (ECG 
triggered black blood RARE). 

Fig.2: GRICS framework for coupled 
resolution of two inverse problems: motion 
compensated reconstruction and motion 
model optimization. 

Fig.1: Encoding operator used for 
generalized reconstruction including 
arbitrary motion and sensitivity encoding, 
generalizing (1) and (2). 
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• External measures 
• respiratory bellows, optical tracking, etc.  

• Explicit Navigator based measures 
• pencil beam navigator, FID navigators, central k-space lines, etc.  

• Self-navigated approaches 
• PROPELLER, radial, spiral trajectories, etc.  

• Motion models 
• Joint estimation of motion and reconstruction parameters

Motion estimation

D. Atkinson, ISMRM 2010
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Retrospective reconstruction of cine images using 
iterative motion correction
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M. Hansen et al., MRM 2011

Retrospective reconstruction of cine images using 
iterative motion correction

Free breathing

}



• Parameterizing motion based on motion sensor signals (eg. bellows) 

• Optimization: 

Joint estimation of motion and reconstruction

u(r, t)| {z }
displacement fields

=
MX

i=1

↵m(r)| {z }
motion parameters

Sm(t)| {z }
motion sensors

min⇢,↵kE(↵)⇢� sk22 + µ1R(↵) + µ2R(⇢)

data  
consistency

regularization  
on image

} }

regularization 
on motion 
parameters

}
F. Odille et al., MRM 2008



• Parameterizing motion based on motion sensor signals (eg. bellows) 

• Generalized reconstruction of inversion coupled systems (GRICS): 

Joint estimation of motion and reconstruction

u(r, t)| {z }
displacement fields

=
MX

i=1

↵m(r)| {z }
motion parameters

Sm(t)| {z }
motion sensors

data  
consistency

regularization  
on image

} }

regularization 
on motion 
parameters

}
F. Odille et al., MRM 2008

min⇢,↵kE(↵)⇢� bk22 + µ1R(↵) + µ2R(⇢)



•  min⇢,↵ kE(↵)⇢� bk22 + µ1R(↵) + µ2R(⇢)| {z }
C(↵,⇢)

Joint estimation of motion and reconstruction

min↵C(↵, ⇢n) min⇢C(↵n, ⇢)

Motion estimation Reconstruction

F. Odille et al., MRM 2008



•   

• Coarse to fine resolution strategies are 
commonly used to avoid local minima 

• Convergence: only empirical

min↵C(↵, ⇢n) min⇢C(↵n, ⇢)

Motion estimation Reconstruction

min⇢,↵ kE(↵)⇢� bk22 + µ1R(↵) + µ2R(⇢)| {z }
C(↵,⇢)

Joint estimation of motion and reconstruction

F. Odille et al., MRM 2008
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Improving constrained reconstruction 
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• Example of myocardial perfusion data with motion

Original Deformation 
corrected

S.G.Lingala, IEEE-TMI, 2015 *Data acquired in accordance with IRB approval, University of Utah
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Improving constrained reconstruction 
with motion correction

• Deformation corrected data is more sparse/compact in transform domains

With 
motion

Motion 
compensated

Smoother temporal gradients 

Fewer significant singular values

Temporal FFT

Fewer  non-
zero coeffs.

With 
motion

Motion 
compensated



Formulation

- Low rank

S.G.Lingala, IEEE-TMI, 2015



Variable splitting and continuation strategies
• Original problem 

• Splitting allows to decouple deformation estimation from reconstruction 

{f⇤, ✓⇤} = min
f,✓

kA(f)� bk22 + �k� (T✓ · f)k`1 ; (1)

data consistency temporal regularization

{ {

min
f,✓,g

kA(f)� bk22 + �k� (g)k`1 ;

s.t., T✓ · f = g;



Variable splitting and continuation strategies
• Modified cost function 

• Penalize the quadratic violation by introducing a parameter  

• Is equivalent to the original cost when      tends to 

min
f,✓,g

kA(f)� bk22 + �


k� (g)k`1 +

�

2
kT✓ · f � gk22
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s.t., T✓ · f = g;

�
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Alternate between well defined subproblems

min
f

D�

min
f

kA(f)� bk22 +
��

2
kT✓ · f � gk22

min
✓

D�

kT✓ · f � gk22min
✓

min
g

D�

k� (g)k`1 +
�

2
k T✓ · f| {z }

f̂

�gk22min
g

Denoising/dealiasing step Reconstruction update

Image registration

• Continuation: Iterate while gradually increasing �



S.G.Lingala, IEEE-TMI, 2015

• Demonstration of robustness to 
initialization with continuation 
strategies

*Data acquired in accordance with IRB approval, University of Utah



Deformation corrected 
temporal finite 
difference

Temporal Finite 
Difference

R=3.75 R=4.5 R=5.6 R=7.5

Fully sampled

*Data acquired in accordance with 
IRB approval, University of UtahS.G.Lingala, IEEE-TMI, 2015
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Methods: Motion-compensated Regional Sparsity

1. Chen X. et al. MRM  2014;72(4):1028-38

Block low rank sparsity with motion guidance (BLOSM)

 X Chen et al. MRM  2014;72(4):1028-38

ANTS non-rigid registration 
Coarse to fine resolution correction 
Block low rank constraint



Results: Prospective Rate-4 Acceleration
BLOSM

Moderate respiratory motion Severe respiratory motion

1. Chen X. et al. SCMR/EuroCMR Joint Scientific Session 2015 Oral 
presentation

BLOSM

 X Chen et al. MRM  2014;72(4):1028-38

Block low rank sparsity with motion guidance (BLOSM)

Free breathing 
myocardial 
perfusion MRI

*IRB approved study at University of Virginia



Motion Corrected Sparse SENSE (MC-SS)Free breathing 
No Motion Correction

Free breathing 
Proposed Method

Breath-hold (BH) 
Reference

End-diastolic volume (ml) 
Proposed vs. reference

End-systolic volume  (ml) 
Proposed vs. reference

2 min acquisition 2 min acquisition 10 min acq.  
(including BHs recovery)

BH
 –

 M
C

(BH + MC)/2(BH + MC)/2

BH
 –

 M
C

(BH + MC)/2(BH + MC)/2

BH
 –

 M
C

BH
 –

 M
C

Stroke Volume (ml) 
Proposed vs. reference

Ejection fraction  (%) 
Proposed vs. reference

Motion corrected CS: free breathing cardiac cine

M.Usman et.al, MRM 2011



1.6 year female  
(beta thalassemia with iron overload)

45

Resolution:  0.9x1.3x1.6 mm3 
Contrast:  Gadavist 
Scan times: 

CS,SG,wAF: 29.6 sec
RT: 102.6 sec

CS
Conventional  

CS & PI

RT
Prospective 

respiratory trig/gated

wAF
Soft-gated CS & PI  

w/ autofocusing 

RT
Prospective 

respiratory trig/gated

wAF
Soft-gated CS & PI  

w/ autofocusing 

CS
Conventional  

CS & PI

JY Cheng et al, Young Investigator Award, ISMRM 2015



• Involves non-convex optimization 
• No convergence guarantees 
• Continuation strategies are crucial to monitor convergence 
• Coarse to fine, variable splitting, etc.  

• Increased computation times due to additional motion estimation step 
• Prior guess of motion estimates, coarse-fine correction, GPUs, parallel computing, etc.  

• Interpolation errors while correcting for large deformation errors 
• Modified Jacobian weighting in regularization (Royuela, 2016)

Challenges: 
Explicit motion estimation and corrected reconstruction

Royuela et al., MRM 2015
Royuela et al., MRM 2016
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• Reorder intensities of signal estimate based on prior reconstruction   
(eg. CS based) 

• Sparsity/Low rank constraint applied on the “reordered” data set 

“Implicit” motion corrected reconstruction:
 Reordering prior based

minfkA(f)� bk22 + �k�(R · f)k1;

Sparsifying operator 
• Temporal Fourier Transform 
• Temporal finite difference 
• Spectral operators for PCA

Reordering prior (known)

G.Adluru et al., Int Journal Biomedical Imaging, 2008  
G.Adluru et al., Med Physics 2016
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Reordering based prior: 1D example

A rapidly varying fully 
sampled signal and its 

sorted version

Reconstruction  
without reordering 

(R=2)

Reconstruction  
with reordering 

(R=2)

G.Adluru et al., Int Journal Biomedical Imaging, 2008  
G.Adluru et al., Med Physics 2016



Sparsity based re-ordering prior
Example of myocardial perfusion MRI

Fully  
sampled

Without reordering 
R=2.5

With reordering 
R=2.5

G.Adluru et al., Int Journal Biomedical Imaging, 2008  
G.Adluru et al., Med Physics 2016 *IRB approved study at University of Utah



Motion State 1
Motion State 2…

Motion State n

Motion averaging

……

Motion state n

……

Motion state 2Motion state 1

XD-GRASP: A Simple Example

Feng L et al. ISMRM 2015 p568 Courtesy: Li Feng, NYU School of Medicine
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z

t

Feng L et al. ISMRM 2015 p568

Motion state 1 Motion state 2

……

Motion state n

……

An extra respiratory dimension  
Temporal sparsity……

Motion averaging

XD-GRASP: A Simple Example

Courtesy: Li Feng, NYU School of Medicine



XD-GRASP Reconstruction

2
1 1 2 22 1 1argmin

x
x E x y S x S xλ λ= ⋅ − + ⋅ + ⋅

x
1S

: Sorted k-space 
: Encoding function (multicoil) 
: Regularization parameters

y
E
λ

: Multidimensional images to be reconstructed 
: Sparsifying transform along the 1st temporal dimension 
: Sparsifying transform along the 2nd temporal dimension

2S

tRes

t

x

y

z

……

• Contrast enhancement 
• Cardiac motion 
• Multiple echoes 
• Flow encoding

Courtesy: Li Feng, NYU School of Medicine



XD-GRASP for DCE-MRI of the Liver

Z projection

Liu J et al. MRM 2010 63(5): 1230–1237 
Spincemaille P et al 2011 29(6): 861–868. 
Pang J et al. MRM 2014 72(5):1208–1217
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Respiratory Motion-Resolved DCE-MRI

GRASP

XD-GRASP

Motion State 1 Motion State 2 Motion State 3 Motion State 4



Conclusions
• Explicit Motion estimation and compensation methods can address the 

motion sensitivity of current sparsity/low rank based models 

• Continuation strategies are used for well behaved convergence 

• Increased computation times and nontrivial interpolation artifacts remain a 
challenge 

• Implicit motion constrained recovery methods show promise to address 
the challenges with explicit methods
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