Motion compensated reconstruction

Educational course: Image acquisition and Reconstruction 25th Annual meeting of the ISMRM, Honolulu, 2017

Sajan Goud Lingala Siemens Healthineers, Princeton, USA

Declaration of Financial Interests or Relationships

Speaker Name: Sajan Goud Lingala

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: Siemens Healthineers

Type of Relationship: Employee

Outline

- Introduction
- Explicit motion constrained recovery schemes
 - Generalized reconstruction of inverted coupled systems (GRICS)
 - Motion compensated Compressed Sensing
 - -- Sparsity, low rank based
 - Applications
 - Challenges
- Heuristic based implicit motion constrained recovery schemes
 - Data sorting
 - XD GRASP
 - Next talk: Manifold approaches

Outline

- Introduction
- Explicit motion constrained recovery schemes
 - Generalized reconstruction of inverted coupled systems (GRICS)
 - Motion compensated Compressed Sensing
 - -- Sparsity, low rank based
 - Applications
 - Challenges
- Heuristic based implicit motion constrained recovery schemes
 - Data sorting
 - XD GRASP
 - Manifold based implicit methods: next talk

Introduction

Occurrence of motion is common in several MRI exams

Head motion

J. Pipe et al, 99

Introduction

Occurrence of motion is common in several MRI exams

Head motion

J. Pipe et al, 99

Cardiac arrhythmias

Courtesy: Andrew Yoon, USC

Introduction

Occurrence of motion is common in several MRI exams

Head motion

J. Pipe et al, 99

Cardiac arrhythmias

Courtesy: Andrew Yoon, USC

Breathing motion

Courtesy: Li Feng, NYU

Motion and k-space

Motion and k-space

The sum in the Fourier Transform implies that motion at any time can affect every pixel

Image motion

k-space effect

Translation (rigid shift)

Phase ramp

Image motion

Translation (rigid shift)

Rotation

k-space effect

Phase ramp

Rotation (same angle)

Imag	m	O t	ion
may		<u>UL</u>	

Translation (rigid shift)

Rotation

Expansion

k-space effect

Phase ramp

Rotation (same angle)

Contraction

Image motion

Translation (rigid shift)

Rotation

Expansion

General affine

$$\mathcal{A}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} + \mathbf{t}$$

$$\mathcal{A}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} + \mathbf{t}$$

k-space effect

Phase ramp

Rotation (same angle)

Contraction

Affine transform

$$\mathbf{k}' = \mathcal{A}^{-T}\mathbf{k}$$

$$\mathcal{F}(\mathbf{k}) = \frac{e^{i2\pi(\mathbf{k}'\cdot t)}}{|det(\mathbf{A})|} \mathcal{F}'(\mathbf{k}')$$

Non-rigid motion

- Most physiological motion is non-rigid
- Not straightforward to directly correct in the k-space

Royuela et al., MRM 2015

Problem of combining k-space shots that are at different motion states

PG. Batchelor et al., MRM 2005; F. Odille et al., MRM 2008

Knowledge of forward model

Knowledge of forward model

Least squares problem

Knowledge of forward model

Least squares problem Solved by Conjugate Gradients

- External measures
 - respiratory bellows, optical tracking, etc.

- External measures
 - respiratory bellows, optical tracking, etc.
- Explicit Navigator based measures
 - pencil beam navigator, FID navigators, central k-space lines, etc.

- External measures
 - respiratory bellows, optical tracking, etc.
- Explicit Navigator based measures
 - pencil beam navigator, FID navigators, central k-space lines, etc.
- Self-navigated approaches
 - PROPELLER, radial, spiral trajectories, etc.

- External measures
 - respiratory bellows, optical tracking, etc.
- Explicit Navigator based measures
 - pencil beam navigator, FID navigators, central k-space lines, etc.
- Self-navigated approaches
 - PROPELLER, radial, spiral trajectories, etc.
- Motion models
 - Joint estimation of motion and reconstruction parameters

Free breathing

Parameterizing motion based on motion sensor signals (eg. bellows)

$$u(\mathbf{r},t) = \sum_{i=1}^{M} \alpha_m(\mathbf{r})$$
 $S_m(t)$ displacement fields motion parameters motion sensors

Parameterizing motion based on motion sensor signals (eg. bellows)

$$\underline{u(\mathbf{r},t)} = \sum_{i=1}^{M} \underline{\alpha_m(\mathbf{r})}$$
 $\underline{S_m(t)}$ displacement fields motion parameters motion sensors

Generalized reconstruction of inversion coupled systems (GRICS):

$$\min_{\rho, \mathbf{\alpha}} \|E(\mathbf{\alpha})\rho - b\|_2^2 + \underbrace{\mu_1 R(\alpha)}_{\text{consistency}} + \underbrace{\mu_2 R(\rho)}_{\text{on motion}}$$
 data regularization regularization on image parameters

- Coarse to fine resolution strategies are commonly used to avoid local minima
- Convergence: only empirical

Example of myocardial perfusion data with motion

Original

Deformation corrected

Example of myocardial perfusion data with motion

Original

Deformation corrected

Deformation corrected data is more sparse/compact in transform domains

Formulation

Variable splitting and continuation strategies

Original problem

$$\{f^*, \theta^*\} = \min_{f, \theta} \|\mathcal{A}(f) - \mathbf{b}\|_2^2 + \lambda \|\Phi(\mathcal{T}_{\theta} \cdot f)\|_{\ell_1};$$
data consistency temporal regularization

Splitting allows to decouple deformation estimation from reconstruction

$$\min_{f,\theta,g} \|\mathcal{A}(f) - \mathbf{b}\|_{2}^{2} + \lambda \|\Phi(g)\|_{\ell_{1}};$$
$$s.t., \mathcal{T}_{\theta} \cdot f = g;$$

Variable splitting and continuation strategies

Modified cost function

$$\min_{f,\theta,g} \|\mathcal{A}(f) - \mathbf{b}\|_2^2 + \lambda \|\Phi(g)\|_{\ell_1};$$
$$s.t., \mathcal{T}_{\theta} \cdot f = g;$$

Variable splitting and continuation strategies

Modified cost function

$$\min_{f,\theta,g} \|\mathcal{A}(f) - \mathbf{b}\|_{2}^{2} + \lambda \|\Phi(g)\|_{\ell_{1}};$$
$$s.t., \mathcal{T}_{\theta} \cdot f = g;$$

• Penalize the quadratic violation by introducing a parameter β

$$\min_{f,\theta,g} \|\mathcal{A}(f) - \mathbf{b}\|_{2}^{2} + \lambda \left[\|\Phi(g)\|_{\ell_{1}} + \frac{\beta}{2} \|\mathcal{T}_{\theta} \cdot f - g\|_{2}^{2} \right]$$

• Is equivalent to the original cost when β tends to ∞

Alternate between well defined subproblems

ullet Continuation: Iterate while gradually increasing eta

 Demonstration of robustness to initialization with continuation strategies

Fully sampled R=4.5 R=3.75R=5.6 R=7.5Deformation corrected temporal finite difference Temporal Finite Difference

*Data acquired in accordance with IRB approval, University of Utah

S.G.Lingala, IEEE-TMI, 2015

Block low rank sparsity with motion guidance (BLOSM)

ANTS non-rigid registration Coarse to fine resolution correction Block low rank constraint

X Chen et al. MRM 2014;72(4):1028-38

Block low rank sparsity with motion guidance (BLOSM)

Moderate respiratory motion

Severe respiratory motion

*IRB approved study at University of Virginia

Free breathing

perfusion MRI

myocardial

Motion corrected CS: free breathing cardiac cine

M.Usman et.al, MRM 2011

1.6 year female

(beta thalassemia with iron overload)

CS

Conventional CS & PI

WAF

Soft-gated CS & PI w/ autofocusing

RT

Prospective respiratory trig/gated

Resolution: 0.9x1.3x1.6 mm³

Contrast: Gadavist

Scan times:

CS,SG,wAF: 29.6 sec

RT: 102.6 sec

Challenges: Explicit motion estimation and corrected reconstruction

- Involves non-convex optimization
 - No convergence guarantees
 - Continuation strategies are crucial to monitor convergence
 - Coarse to fine, variable splitting, etc.

Challenges: Explicit motion estimation and corrected reconstruction

- Involves non-convex optimization
 - No convergence guarantees
 - Continuation strategies are crucial to monitor convergence
 - Coarse to fine, variable splitting, etc.
- Increased computation times due to additional motion estimation step
 - Prior guess of motion estimates, coarse-fine correction, GPUs, parallel computing, etc.

Challenges: Explicit motion estimation and corrected reconstruction

- Involves non-convex optimization
 - No convergence guarantees
 - Continuation strategies are crucial to monitor convergence
 - Coarse to fine, variable splitting, etc.
- Increased computation times due to additional motion estimation step
 - Prior guess of motion estimates, coarse-fine correction, GPUs, parallel computing, etc.
- Interpolation errors while correcting for large deformation errors

Challenges:

Explicit motion estimation and corrected reconstruction

- Involves non-convex optimization
 - No convergence guarantees
 - Continuation strategies are crucial to monitor convergence
 - Coarse to fine, variable splitting, etc.
- Increased computation times due to additional motion estimation step
 - Prior guess of motion estimates, coarse-fine correction, GPUs, parallel computing, etc.
- Interpolation errors while correcting for large deformation errors
 - Modified Jacobian weighting in regularization (Royuela, 2016)

"Implicit" motion corrected reconstruction: Reordering prior based

 Reorder intensities of signal estimate based on prior reconstruction (eg. CS based)

"Implicit" motion corrected reconstruction: Reordering prior based

- Reorder intensities of signal estimate based on prior reconstruction (eg. CS based)
- Sparsity/Low rank constraint applied on the "reordered" data set

 $\frac{\text{Reordering prior (known)}}{min_f\|A(f)-b\|_2^2+\lambda\|\Phi(\mathcal{R}\cdot f)\|_1};$ $\frac{\text{Sparsifying operator}}{\text{- Temporal Fourier Transform}}$

- Temporal finite difference
- Spectral operators for PCA

Reordering based prior: ID example

Sparsity based re-ordering prior Example of myocardial perfusion MRI

G.Adluru et al., Int Journal Biomedical Imaging, 2008 G.Adluru et al., Med Physics 2016

*IRB approved study at University of Utah

XD-GRASP: A Simple Example

XD-GRASP: A Simple Example

Motion averaging

tory dimension sparsity

Courtesy: Li Feng, NYU School of Medicine

XD-GRASP Reconstruction

$$x = \underset{x}{\operatorname{arg\,min}} \|E \cdot x - y\|_{2}^{2} + \lambda_{1} \|S_{1} \cdot x\|_{1} + \lambda_{2} \|S_{2} \cdot x\|_{1} \dots$$

x: Multidimensional images to be reconstructed

 S_1 : Sparsifying transform along the 1st temporal dimension

 S_{2} : Sparsifying transform along the 2nd temporal dimension

y: Sorted k-space

E: Encoding function (multicoil)

 λ : Regularization parameters

- Contrast enhancement
- Cardiac motion
- Multiple echoes
- Flow encoding

XD-GRASP for DCE-MRI of the Liver

Liu J et al. MRM 2010 63(5): 1230-1237 Spincemaille P et al 2011 29(6): 861-868. Pang J et al. MRM 2014 72(5):1208-1217

Respiratory Motion-Resolved DCE-MRI

XD-GRASP

GRASP

Motion State 1 Motion State 2 Motion State 3 Motion State 4

Conclusions

- Explicit Motion estimation and compensation methods can address the motion sensitivity of current sparsity/low rank based models
- Continuation strategies are used for well behaved convergence
- Increased computation times and nontrivial interpolation artifacts remain a challenge
- Implicit motion constrained recovery methods show promise to address the challenges with explicit methods

Acknowledgements

- Slides from
 - Li Feng, NYU School of Medicine
 - Xiao Chen, Siemens Healthineers
 - Muhammad Usman, Kings College London
 - Javier Royuela del Val, University of Valladolid
 - Ganesh Adluru, University of Utah
 - ▶ Joseph Cheng, Stanford University
 - Andrew Yoon, University of Southern California