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Abstract—We recently proposed an accelerated dynamic mag-
netic resonance imaging (MRI) reconstruction algorithm that
exploits the underlying low rank and sparse properties of the
data to achieve highly accelerated reconstructions. In this paper,
we validate our algorithm in the context of dynamic free breath-
ing cardiac Perfusion MRI on the Physiologically Improved
Non Uniform Cardiac Torso Phantom, PINCAT phantom. The
practical utilities of our scheme in providing significantly better
reconstructions at higher accelerations in comparison to existing
methods are studied. We demonstrate that our scheme donot have
trade offs with accurate temporal modeling and spatial quality
unlike the existing low rank based schemes. Our results also
show the capability of our scheme to achieve better reconstruction
qualities at high accelerations in comparison to using only the low
rank or sparsity properties individually. We argue that the speed
up obtained by our scheme could be capitalized in perfusion
imaging to provide better spatio-temporal resolutions and volume
coverage while the subject is freely breathing

I. INTRODUCTION

Over the recent past, dynamic contrast enhanced cardiac
perfusion MRI has become a useful tool to detect the presence
of coronary artery disease. This involves the acquisition of
temporal cardiac images that capture the uptake and wash
out of the contrast agent through different regions of the
heart. For an accurate clinical perfusion quantification study,
the following inter dependent demands have to be met: (a)
high temporal resolution (1-2 heartbeats) and long breath-hold
duration (35-50 seconds) to accurately fit the kinetic model
(b) good in-plane spatial resolution (≤3mm2) to detect sub
endocardial ischemia, assess transmural extent of defects, and
minimize dark-rim artifacts, and (c) good spatial coverage
(≈ 6-8 slices) to cover the entire heart. Since MRI is a
slow acquisition technique, acquiring the full k-space data at
every time frame would mean a significant compromise in the
temporal resolution and volume coverage. To overcome this,
the goal over the recent past has been to develop accelerated
reconstruction schemes that could recover the underlying
dynamic scene from under-sampled k-t space measurements.

The well known cardiac MRI accelerated techniques such
as DIME, UNFOLD, k-t BLAST [1], [2], [3] are limited
to applications where the signal of interest is approximately
periodic such as in cine imaging; they specifically rely on
compactly representing the signal in the x-f space; (f - temporal
frequency). The x-f space is significantly disturbed and is no
longer compact in the presence of the contrast agent and the
breathing motion (which could result if the patient do not meet
the long breath hold demands or in free breathing studies). The
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use of the Karhunen Loueve Transform (KLT) in representing
a variety of dynamic signals has been gaining popularity due to
its potential to compactly represent the signal, without making
any assumptions on the periodicity of the signal [4], [5].
Liang introduced this in the context of Cardiac MRI, where he
stacked the voxel time series row wise in a signal matrix. The
linear dependency of the rows in this matrix (i.e, a low rank
matrix) is equivalent to the signal being compact in the KLT
space. The KLT coefficients in the x-KLT space are directly
derived from the data and this representation is guaranteed
to be compact, making it a promising tool for accelerated
perfusion imaging. The use of the total variation (TV) penalty
in constraining the spatial and temporal finite differences in the
context of cardiac perfusion imaging has been studied by [6],
[7]. While their scheme solves the aliasing problem efficiently
at low accelerations, it tends to over-smooth some of the spatial
features at higher accelerations.

We recently have proposed a spectrally regularized matrix
recovery frame work that capitalizes both on the low rank and
the sparsity properties of the signal to recover high quality
reconstructions from highly sparse k-t samples (k-t SLR) [8].
k-t SLR brings in the following novel aspects that could
benefit the acquisition scheme in a range of dynamic imaging
applications:
• Simultaneous estimation of the temporal bases and spatial

weights directly from the under-sampled k-t measure-
ments as opposed to the conventional two step KLT
based scheme of first estimating the temporal bases from
training data and then the spatial weights from the sparse
outer k space samples.

• Capability to incorporate flexible non Cartesian sampling
trajectories as opposed to the rigid dual Cartesian sam-
pling patterns used in conventional KLT schemes.

• Exploitation of the sparsity penalty in appropriate do-
mains in conjunction with the low rank property, which
could allow for efficient operations at higher accelera-
tions.

In this paper, we study the utility of k-t SLR on first
pass cardiac perfusion imaging by using the Physiologically
Improved Non Uniform Cardiac Torso Phantom (PINCAT)
[9]. We first review the k-t SLR scheme and then focus on
validating the different novel aspects listed above.

II. k-t SLR: FORMULATING THE OBJECTIVE FUNCTION

For simplicity, we demonstrate the reconstruction of a 2D
cardiac slice. The extension to 3D imaging is straightforward.
We denote the spatio-temporal signal as γ(x, t), where x is
the spatial location and t denotes time. The dynamic MRI
measurements correspond to the samples of the signal in k− t
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space, corrupted by noise:

bi =

∫
x

γ(x, ti) exp
(
−jkTi x

)
dx + ni; i = 0, .., s− 1.

Here, (ki, ti) indicates the ith sampling location. We denote
the set of sampling locations as Ξ = {(ki, ti), i = 0, .., s−1}.
The above expression can be rewritten in the vector form as
b = A(γ) + n, where, A is the Fourier sampling operator.
The goal is to recover the signal γ(x, t) from the measured
k-t space samples.

In dynamic imaging applications, the temporal profiles of
the voxels, indicated by the n-dimensional vectors

qi = [γ(xi, t0), γ(xi, t1), .., γ(xi, tn−1)]T ;

i = 0, ..,m− 1, (m : #ofvoxels)

are highly correlated or linearly dependent. Liang et. al.,
proposed to re-arrange the spatio-temporal signal γ(x, t) in
a matrix form to exploit the correlations [?], [4]:

Γ =

 γ (x0, t0) . . . γ (x0, tn−1)
...

γ (xm−1, t0) . . . γ (xm−1, tn−1)

 (1)

The rows of Γ correspond to the voxels, while the columns
represent the temporal samples. Since the rows of this m ×
n matrix are linearly dependent, the rank of Γ, is given by
r < min (m,n). An arbitrary m× n matrix of rank r can be
decomposed as

Γ = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

VH︸︷︷︸
r×n

(2)

This decomposition implies that the spatio-temporal signal
γ(x, t) can be expressed as a weighted linear combination
of r temporal basis functions [4]:

γ(x, t) =

r−1∑
i=0

ρi(x) vi(t). (3)

The temporal basis functions vi(t) are the columns of the
matrix V in (2) while the spatial weights ρi(x) are the row
vectors of UΣ (often termed as spatial weights).

We formulate the recovery of the signal matrix Γ problem
as

Γ∗ = arg min
Γ
‖A (Γ)− b‖2

s.t
{

rank(Γ) ≤ r, ‖ΦHΓΨ‖`0 < K
}

(4)

where the low rank property is exploited by the rank constraint
and the sparsity by the Φ and Ψ operators or transforms that
sparsify the row space and column space of Γ respectively. The
use of additional transforms to achieve the sparsity constraint
allows one to reduce the degrees of freedom (dof) significantly;
from r(m + n − r) to r(k1 + k2 − r), where k1 << m
and k2 << n are the sparsity levels of the left and right
singular vectors respectively. This property can reduce the
measurements significantly to recover the matrix Γ.

Rewriting the above constrained optimization problem using
Lagrange’s multipliers and relaxing the penalties, we obtain

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ1 ϕ (Γ) + λ2 ψ (Γ) , (5)

where ϕ(Γ) is an appropriate spectral penalty that penalizes
the singular values of the matrix and is a surrogate for the
rank of the matrix. We use the general class of Schatten p-
functionals, specified by

ϕ(Γ) = (‖Γ‖p)p =

min{m,n}∑
i=1

σpi (6)

The above spectral penalty simplifies to the nuclear norm for
p = 1. When p ≤ 1, this penalty ceases to be a norm and is
non-convex. In our studies, we use p = 0.1 due to its superior
performance in suprressing singular values associated with
artifacts when compared to using nuclear norm. The use of
similar non-convex semi-norms are well-studied in the context
of vector recovery and are found to significantly improve
the reconstruction of the signal from fewer measurements in
comparison to the standard `1 semi-norms [10]–[12].
ψ (Γ) = ‖ΦHΓΨ‖`1 is a surrogate for the `0 term in the

sparsity constraint of (4). We use the total variation (TV) norm
to exploit the sparsity of the gradient of the entire volume.
Specifically the TV norm of the entire volume is specified by

ψ(Γ) =

∥∥∥∥∥∥
√√√√ 2∑

i=0

∣∣ΦH
i ΓΨi

∣∣2∥∥∥∥∥∥
`1

(7)

where Φ0 = Dx; Ψ0 = I, Φ1 = Dy; Ψ1 = I, and Φ2 =
I; Ψ2 = Dt; Dx, Dy and Dt are the finite difference matrices
along x, y, and t respectively.

III. THE OPTIMIZATION ALGORITHM

We use a variable splitting algorithm to solve (5). Auxiliary
variables (R and Si) are introduced to convert the uncon-
strained minimization problem in (5) to a simpler constrained
one as follows:

Γ∗ = arg min
Γ,R,S

‖A (Γ)− b‖2 + λ1 ϕ (R) + λ2

∥∥∥∥∥∥
√√√√ 2∑

i=0

‖Si‖2

∥∥∥∥∥∥
`1

s.t. Γ = R; Si = ΦH
i ΓΨi; i = 0, 1, 2 (8)

We now use the penalty method to solve (8), where we
minimize:

Dβ1,β2(Γ,R,Si) = ‖A (Γ)− b‖2 + λ1 ϕ (R) + λ2

∥∥∥∥∥∥
√√√√ 2∑

i=0

‖Si‖2

∥∥∥∥∥∥
`1

+
β1
2
‖Γ−R‖2 +

β2
2

2∑
i=0

‖ΦH
i ΓΨi − Si‖2 (9)

This expression has to be minimized with respect to Γ, R,
and Si; i = 0, 1, 2 to solve (5). The second row of (9) are
the penalties introduced to enforce the constraints Γ = R and
Si = ΦH

i ΓΨi; i = 0, 1, 2. We solve this joint penalty using
a three step alternating minimization scheme, where we solve
for a variable of interest assuming the other two to be fixed
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(a) A spatial frame (b) Temporal profile

Fig. 1. The PINCAT phantom used to validate the proposed scheme. A
spatial frame at peak LV uptake along with the image time series through the
arrow in (a) is shown in (b).

as follows:

Γn+1 = arg min
Γ
‖A (Γ)− b‖2 +

β1
2
‖Γ− (Rn) ‖2 +

β2
2

2∑
i=0

‖ΦH
i ΓΨi − (Si,n) ‖2, (10)

Rn+1 = arg min
R
‖Γn+1 −R‖2 + 2λ1/β1 ϕ (R) , (11)

Si,n+1 = arg min
{Si}

2∑
i=0

‖ΦH
i Γn+1Ψ− Si‖2 +

2λ2/β2

∥∥∥∥∥∥
√√√√ 2∑

i=0

‖Si‖2

∥∥∥∥∥∥
`1

; i = 0, 1, 2 (12)

We use a few Conjugate Gradient steps to obtain Γn+1 by
minimizing the quadratic cost function (10). (11) is solved as
the singular value shrinkage:

R∗ =

min(m,n)∑
i=0

(
σi − λ σp−1i /β

)
+

uiv
∗
i , (13)

Here, the shrinkage operator + is defined as:

(X)+ =

{
X if X ≥ 0
0 else (14)

The solution of (12) requires the joint processing of all the
terms Pi; i = 0, 1, 2, such that the magnitude

∑2
i=0 ‖Pi‖2, is

shrunk:

Si,n+1 =
Pi∑2

i=0 ‖Pi‖2
·

(
2∑
i=0

‖Pi‖2 −
λ2
β2

)
+

, (15)

where Pi = ΦH
i Γn+1Ψ. This approach is termed as multidi-

mensional shrinkage of {Pi, i = 0, 1, 2} [13].
High values of β1 and β2 are required for the constraints in

(8) to hold, but this would result in slow convergence rate. On
the other hand with low values of β1 and β2, one can increase
the rate of convergence but would result in poor accuracy.
To obtain a good tradeoff, we propose to solve a sequence of
subproblems Dβ1,β2 with gradually increasing β1 and β2. This
approach is observed to significantly improve the convergence
rate, while maintaining the desired accuracy levels. To sum
up, the alternating frame work starts with small values of β1
and β2, solves (9) by minimizing Γ, R, Si i.e, (10), (11), (12)
respectively in an alternating manner until convergence is met;
(We term this as the inner loop). Next, the parameters β1 and
β2 are updated in an outer loop to a higher number and the
inner loop is again iterated. The outer loop is repeated until
the conditions R ≈ Γ and Si ≈ ΦH

i ΓΨi; i = 0, 1, 2 are
achieved.

IV. PERFORMANCE EVALUATION

A. The PINCAT Phantom

To validate k-t SLR in the context of cardiac perfusion
imaging, we use the Physiologically Improved Non uniform
CArdiac Torso (PINCAT) numerical phantom [9]. The PIN-
CAT phantom provides a realistic model of the dynamics of the
different organs in the body. We focus on a single slice of the
phantom, which has the cross section of the heart and consider
dynamic contrast enhanced images with a temporal resolution
of one heart-beat, acquired during the diastolic phase (where
motion due to cardiac pumping is minimal). The time series
data consists of 70 time frames corresponding to 70 heart-
beats with respiratory motion (no breath-holding). The contrast
variations due to bolus passage were modeled realistically in
regions of the Right Ventricle, Left Ventricle and the Left
Ventricle myocardium. The spatial matrix size is 128 x 128,
which corresponds to a spatial resolution of 1.5 x1.5 mm2.
A spatial frame and the image time series of this data are
illustrated in figure 1.

B. Methods

We test the proposed frame work against the following
methods:
• Conventional KLT schemes [4], [5] with different sizes

of training data (Nt)
• k-t FOCUSS [14], which relies on the sparsity of the

signal in the x-f space
• Own variants of k-t SLR: Regularized schemes that relies

on using only (a) Low rank or (b) sparsity properties
The reconstructions are evaluated at different accelerations
(R), which is defined as the ratio of the number of acquired
phase encodes in the fully sampled set to the number of
phase encodes used to reconstruct the data. We quantify the
performance of the algorithms using the signal to error ratio
(SER) specified as

SER = −10 log10

‖Γrec − Γorig‖2F
‖Γorig‖2F

, (16)

where ‖ · ‖F is the Frobenius norm.
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Fig. 2. SER in dB at different accelerations: Note that the k-t SLR scheme
provides an improvement of 3-5 dB over k-t FOCUSS and conventional
KLT based schemes and about 2dB over its own variants (low rank and TV
penalties). The improvement over TV gets significant at higher Rs>5. The
vertical black line at R = 6.4 points to specific qualitative comparisons in
figure 4.
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(b) KLT based, R = 3.45, SER: 9.8 dB 

ky (c)  Spectral penalty                                        
 Only Low rank (p=0.1), "2=0                                            
 R = 3.2, SER: 16.59 dB t 

(e) k-t SLR, lp (p=0.1), A =6.4 ,spokes= 20, SNR: 16.21 dB 

Estimated 

(d) Spectral penalty lp (p=0.1), "2=0                       
         A = 6.4, SNR: 14.05 dB 

Fig. 3. Comparison of the standard KLT schemes with spectrally regularized reconstruction scheme; no sparsity priors are assumed in this comparison. Each
row in the figure corresponds to the reconstructions with different reconstruction schemes and sampling patterns. We show the sampling pattern, a frame of
the reconstructed dataset, the corresponding error image (shown at the same scale in all the insets), and the estimated temporal basis functions (vi(t), i = 2 to
5) overlaid on the actual temporal basis functions in each row. It is seen that the classical KLT based schemes experience a tradeoff between spatial aliasing
and accuracy of temporal modeling. The first row correspond to classical KLT schemes with Nt = 41, where the basis functions are estimated correctly.
However, the sparse sampling of outer k-space regions results in spatial aliasing. The temporal basis functions fail to capture the dynamics, when the number
of phase encodes in training data is reduced to Nt = 5 in the second row; it is seen that the movement of the heart due to respiration is modeled inaccurately
(pointed by the arrow). The spectrally regularized reconstruction scheme is capable of accurately estimating the temporal bases and spatial weights directly
from the undersampled data. The use of a flexible radial sampling pattern also enables the spectrally regularized scheme to spread the alias patterns in an
in-coherent manner.

We add zero mean Gaussian random noise to the k-t
measurements such that the signal to noise ratio is 46 dB.
For the Classical KLT schemes which assume a dual density
Cartesian sampling pattern (see figure 3 for the sampling tra-
jectory used), we assume the number of principal components
to be 20. The remaining schemes (k-t FOCUSS, k-t SLR
and its variants (low rank constraint alone, TV constraint
alone) are capable of accounting for arbitrary non-Cartesian
sampling patterns. For these schemes, we consider a radial
trajectory with uniform angular spacing; the angular spacing
between the spokes is chosen to obtain the specified R. The
trajectory is rotated by a random angle in each temporal frame
to make the measurements incoherent. We use the NUFFT
approximation [15] to realize the A operator. See Figure 3
for an illustration. We choose the regularization parameters
λ1 & λ2 for all the regularized schemes (k-t FOCUSS, k-t
SLR, low rank penalty alone, and TV penalty alone) such that
the SER of the reconstructions are maximized. We compare
the reconstructions with the known ground truth for these
comparisons. All of the regularized schemes are initialized
with the zero filled IFFT reconstruction/gridding and iterated
until convergence.

C. Validation

We initially demonstrate the utility of the proposed spec-
trally regularized matrix recovery frame work to recover low
rank matrices effectively in comparison to conventional KLT
schemes in figure 3. No sparsity priors are used in our scheme

since the focus is to evaluate the performance in recovering
low rank matrices. We observe that the accuracy of the
temporal basis functions estimated with the classical schemes
is dependent on the number of central phase encodes in the
training data; theres a trade off in the estimation quality of the
temporal bases and spatial reconstructions with the classical
KLT scheme. Since the spectrally regularized matrix recovery
scheme estimates the temporal bases and the spatial weights
directly from the under-sampled data, the estimates are more
representative of the data and hence accurate. The advantage
of employing a flexible non Cartesian sampling pattern is also
exploited by the use of the proposed scheme.

We next show the quantitative comparisons of all the
schemes at different Rs in figure 2. We observe that k-t SLR
has a consistent 3-5 dB improvement in SER over Conven-
tional KLT and k-t FOCUSS schemes. The improvement over
using only low rank and only TV penalties are also significant
(about 2 dB). In general we observe, using low rank property
alone has residual aliasing and temporal over smoothing while
using TV alone tends to over-smooth the spatial features sig-
nificantly at higher Rs (> 5). Conventional KLT schemes have
the tradeoff between temporal modeling and spatial quality as
discussed above. k-t FOCUSS has significant motion artifacts,
since the sparsity of the x-f space is significantly disturbed
with the perfusion and breathing changes. We demonstrate
these behaviors qualitatively in figure 4 at R ≈ 6. From this
figure, we show that at high Rs > 5, where all the other
schemes have compromises in their reconstructions, k-t SLR
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Conventional KLT
SER: 10.29 dB

k-t FOCUSS
SER: 11.72 dB

Only Low Rank
SER: 14.05 dB

Only TV
SER: 14.29 dB

k-t SLR
SER: 16.21 dB

Fig. 4. Performance evaluation of k-t SLR in comparison with different schemes at R ≈ 6: The Conventional KLT scheme is shown at R = 5.74 while
the others are shown at R = 6.4. The conventional KLT scheme exhibit incorrect temporal modeling and spatial aliasing .Since k-t FOCUSS rely on the
sparsity in the x − f space, which is disturbed in the presence of breathing motion, inter frame motion artifacts manifests in its reconstructions(arrow in
the inset of k-t FOCUSS reconstruction). In the spectrally regularized schemes, the use of the low rank constraint alone tend to penalize the singular values
excessively, resulting in temporal smoothing. The low rank constraint alone does not get rid of the spatial artifacts completely resulting in residual streaking
artifacts (arrows in the low rank insets). The use of the TV scheme alone tends to lose some important details due to over spatial smoothening (arrows in TV
insets). For instance, the border between the left ventricular myocardium and the right ventricular blood pool is lost completely and the border between the
right ventricular blood pool and the right ventricular myocardium is smeared (arrows in TV insets). It is observed that the k-t SLR combines the advantages
of both low rank and TV schemes to provide more accurate reconstructions

recovers the underlying dynamic perfusion scene efficiently
making it a useful tool for perfusion imaging aiming at high
spatio-temporal resolutions, better volume coverage while the
subject is freely breathing.

V. CONCLUSIONS

We validated the practical utilities of the k-t SLR algo-
rithm in the context of free breathing perfusion imaging.
In particular, we showed improvised reconstructions against
conventional KLT schemes which have compromises between
the spatial quality and accurate temporal modeling. The utility
of the joint low rank and TV penalty allowed for exploiting
the inherent redundancy of the data effectively and allowed for
operations at higher accelerations (R> 5). With cardiac perfu-
sion MR imaging having contradicting demands in achiev-
ing better spatio-temporal resolutions, minimal breath hold
constraints, larger volume coverage, the efficient accelerated
reconstructions provided by k-t SLR could bring in a potential
practical advantage. The current work thats on progress is on
further validating the k-t SLR scheme on in-vivo data sets
with consideration to further speed ups by techniques such as
Parallel Imaging.
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