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Abstract— We introduce a novel algorithm to reconstruct real-
time cardiac MRI data from undersampled radial acquisitions.
We exploit the fact that the spatio-temporal data can be rep-
resented as the linear combination of a few temporal basis
functions. The current approaches that capitalize this property
estimate the basis functions from central phase encodes, acquired
with a fine temporal sampling rate. In contrast, we estimate
the basis functions from the entire under-sampled data. By
eliminating the need for training data, the proposed method can
achieve potentially high acceleration factors. More importantly,
the estimation of the temporal functions from the entire data
significantly improves the quality of the basis functions, which
inturn improves the quality of the reconstructions. Experiments
on numerical phantoms show a significant reduction in artifacts
at high acceleration factors, in comparison to current schemes.

I. INTRODUCTION

Classical cardiac MRI (CMRI) techniques aim to image
the heart by freezing the motion through ECG gating and
breath-holding. Recently, several researchers have exploited
the structure in x − f space to reconstruct the cardiac data
from under-sampled acquisitions, thus significantly accelerat-
ing Cine CMRI [1], [2], [3], [4]. Since respiration and motion
can alter the x-f space structure, these schemes are usually
applied to breath-hold acquisitions.

Recently, algorithms that model the spatial-spectral signal
as the linear combination of arbitrary temporal basis functions,
which are estimated from the data itself, were introduced [5],
[6]. These methods are based on the theoretical frame work
developed in the Partially Separable Functions (PSF) model
[7]. The flexibility of these schemes enable them to account
for respiration and heart beat variations; it has the potential
to enable real-time CMRI. In practical implementations, these
methods involve the estimation of the temporal basis functions
from the central phase encodes, acquired with a high temporal
sampling rate. The ability of the temporal basis functions
to represent the spatio-temporal signal is dependent on the
number of phase encodes used to estimate them. For example,
if only the central lines are used as in [6], the estimated
temporal functions will fail to capture intermediate vertical
shifts in the heart during the acquisition (eg. due to respiration
or motion). This can be mitigated by acquiring more training
data as in [5]. However, the acquisition of a large number of
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phase encodes at a fine sampling rate will significantly limit
the achievable acceleration factor.

To overcome these problems, we propose to simultaneously
estimate the signal and the basis functions from the entire
under-sampled k-t space data. Since the temporal functions
are estimated from significantly more k-t space samples than
central phase encodes, they will be more representative of the
data, resulting in higher quality reconstructions. In addition,
by freeing up the time for collecting the training data at a fine
temporal resolution, this approach can significantly improve
the achievable acceleration.

The simultaneous estimation of the signal and basis func-
tions is enabled by re-interpreting the modeling of the spatio-
temporal signal as the linear combination of very few basis
functions. This representation is equivalent to constraining the
signal to be a low-rank matrix, whose rows correspond to the
voxels and the columns correspond to the temporal samples.
In contrast to the two-step approach of first determining
the temporal basis functions, followed by the estimation of
the spatial weights, we propose to simultaneously estimate
them by formulating it as a nuclear norm minimization al-
gorithm [8]. Since the achievable acceleration with nuclear
norm minimization alone is not sufficient for real-time cardiac
applications, we propose to additionaly penalize the sparsity
of the signal in x − f space. The class of signals that are
simultaneously sparse and low-rank are much smaller than the
class of sparse signals or the class of low-rank signals. Hence,
this approach enables us to reconstruct the signal reliably even
at high acceleration factors.

The classical semi definite programming (SDP) based al-
gorithms to minimize the nuclear norm are computationally
inefficient for large scale problems [8]. Moreover, algorithms
designed for nuclear norm minimization are not directly ap-
plicable to our case, since our criterion has both nuclear norm
and sparsity penalties. We introduce a new majorize-minimize
algorithm to minimize the proposed penalty. The proposed
algorithm derives the solution by iterating two simple steps.
The first step involves shrinking the singular values and the
x−f space signal to obtain two auxillary variables. The second
step uses the auxillary variables to derive the signal estimate
using a simple Fourier domain replacement algorithm. The run
time of the algorithm is a few minutes, even for large datasets.

We study the performance of the proposed scheme, in
comparison to classic low rank matrix recovery algorithms
based on temporal basis functions [5], [6]. Using numerical ex-
periments, we show that the proposed scheme can significantly
improve the acceleration factors in cardiac MRI applications.



II. CMRI RECONSTRUCTION AS AN OPTIMIZATION

We will focus on the reconstruction of a single cardiac slice
in this paper; the extension of this scheme to 3-D imaging
is straightforward. We denote the spatio-temporal signal as
γ(x, t), where x = (x, y) is the spatial location. The temporal
Fourier transform of γ is indicated as γ̂(x, f). The goal of
the paper is to recover the signal from its sparse k − t space
samples, which are corrupted by noise

yi =
∫
x

γ(x, ti) exp
(
jkTi x

)
+ ni. (1)

Here, (ki, ti) indicates the ith sampling location in k-t space.
We denote the set of sampling locations as Ξ = {(ki, ti), i =
0, .., L − 1}. The above expression can be rewritten in the
vector form as y = A(γ)+n. Here, A is the Fourier sampling
operator.

The spatio-temporal signal γ(x, t) can be re-arranged in a
matrix form, where the rows correspond to the voxels and the
columns correspond to the time samples as in the PSF model
[7]

Γ =

 γ (x0, t0) . . . γ (x0, tn)
...

γ (xm, t0) . . . γ (xm, tn)

 (2)

The signal is modeled as a linear combination of a few
temporal basis functions.This representation is equivalent to
assuming that Γ is a low rank matrix. If the m× n matrix Γ
(corresponding to m voxels and n time points) is a matrix of
rank r, its singular value decomposition is given by

Γ = U︸︷︷︸
m×r

S︸︷︷︸
r×r

V∗︸︷︷︸
r×n

(3)

The above decomposition implies that γ can be expressed as
the linear combinations of r temporal basis functions:

γ(x, t) =
r−1∑
i=0

ρi(x) vi(t). (4)

The temporal basis functions vi(t) are the columns of the
matrix V in (3), while the spatial weighting functions ρi(x)
correspond to the rows of the m× r matrix US.

Classical schemes based on low rank matrix recovery esti-
mate vi(t) using the PCA of a low-spatial resolution training
data set, acquired with a high temporal sampling rate [5],
[6]. If the number of phase encodes in the training dataset
are small, this approach may fail to capture the temporal
variations in the high-resolution signal. To avoid this problem,
we propose to recover ρi(x) and vi(t) simultaneously from the
undersampled k-t space data. We propose to use the penalized
optimization algorithm:

γ = arg min
γ
‖A(γ)− y‖2︸ ︷︷ ︸

data consistency

+ µ1 ‖Γ‖∗︸ ︷︷ ︸
nuclear norm

+µ2 ‖γ̂‖`1︸ ︷︷ ︸
`1 norm

,

(5)
where ‖Γ‖∗ =

∑min(m,n)
i=1 |σi| is the nuclear norm of Γ and

‖γ̂‖`1 is the `1 norm of the temporal Fourier transform of ρ.
The nuclear norm is a surrogate for the rank of the matrix,
while the `1 norm is a surrogate for the cardinality of ρ in

the x− f space. The use of the surrogates results in a convex
optimization problem that has a unique global minimum.

The recovery of the temporal basis functions from the entire
data ensures that all the temporal variations will be captured.
At high acceleration factors, the use of the nuclear norm alone
might not be sufficient. Hence, we exploit the smaller size of
the class of signals that are simultaneously sparse and low-rank
in comparison to signals that are either sparse or low-rank; the
use of the joint penalty can reliably recover the signal even
when the acceleration factor is high. Additionally, we will use
radial trajectories with pseudo-random angles. Pseudo-random
radial trajectories result in incoherent spatio-temporal aliasing
patterns. Since the aliasing pattern varies from voxel to voxel,
it is unlikely that the singular vectors corresponding to high
singular values are influenced by them.

III. NUMERICAL OPTIMIZATION ALGORITHM

Classical nuclear norm minimization algorithms are not
readily applicable to our case since our criterion has two
penalty terms: the nuclear norm and the `1 norm. Hence, we
now introduce a computationally efficient majorize-maximize
algorithm to derive the minimum of (5)

A. Approximation induced by the Huber function

We introduce a novel majorize maximize algorithm to
minimize (5). The central idea is to approximate the nuclear
norm by a Huber induced matrix penalty, while the `1 norm

Fig. 1. Dependence of the reconstruction on the regularization parameters at
high acceleration factors: (First row: A frame at mid systole, Second row: A
time profile for the y dimension at x = 32. Third, Fourth and Fifth rows show
respectively the first three principal components i.e, vi(t), for i = 1 to 3. If
we rely only on the nuclear norm penalty (µ1) when A = 12.8, the temporal
basis functions are distorted as shown in the second column. The basis
functions capture the alias components, thus resulting in poor reconstructions.
In contrast, the addition of the sparsity penalty (µ2) significantly improve the
quality of the temporal basis functions and hence the reconstructions, as seen
from the last column.



Fig. 2. Comparison of the proposed reconstructions with classical methods
that rely on low rank matrix recovery with different training data sizes on
Cine data: The ability of the proposed scheme to estimate the temporal basis
functions from the entire k-space data eliminated the need for training data,
acquired at high temporal sampling rates. In addition, the quality of the
estimated temporal functions using both the low rank and sparsity penalties
are higher. Specifically, the error at the dynamic region(heart) of the image
is significantly lower for the proposed method in comparison to classical
schemes.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Net Acceleration Factor

R
o
o
t 

M
ea

n
 S

q
au

re
 E

rr
o
r

 

 

 1

 3

 5

 11

Proposed method

Low rank matrix
recovery schemes 
for different sizes 
of training data

Fig. 3. Root Mean Square Error (RMSE) as a function of net acceleration
factor for Cine data. The proposed scheme which simultaneously estimates
the temporal basis and the spatial weights using joint low rank and sparsity
penalties produce lower errors consistently and extends over a wide range of
net acceleration factors.

is approximated by the Huber norm to obtain

γ = arg min
γ
‖A(γ)− y‖2︸ ︷︷ ︸

data consistency

+µ1 ϕβ1(Γ)︸ ︷︷ ︸
≈‖Γ‖∗

+µ2 ψβ2(γ̂)︸ ︷︷ ︸
≈‖γ̂‖`1

(6)

Here, ϕβ(Γ) =
∑min(m,n)
i=1 ψβ(σi) is the Huber-induced ma-

trix penalty and ψβ(γ̂) =
∑m
i=1

∑n
j=1 ψβ(γ̂(xi, fj)) is the

Huber norm of γ̂. The Huber function is specified as

ψβ(x) =
{
|x| − 1/2β if x ≥ 1

β

β |x|2 /2 else .
(7)

The parameters β1 and β2 specifies the quality of the approx-
imation of (6) to (5). (6) tends to (5), as β1 = β2 → ∞.
Similarly, when β1 = β2 = 0, (5) simplifies to the standard
Tikhonov regularized least squares problem, which can be
solved analytically. We will use this approximation property
to derive a fast continuation scheme, which is discussed in
Section III-C.
B. Majorize maximize algorithm for Huber induced penalty

We majorize the two penalty terms in (6) as

ϕβ(Γ) = min
Λ

β

2
‖Γ− Λ‖2F + ‖Λ‖∗ (8)

ψβ(γ̂) = min
θ̂

β

2
‖γ̂ − θ̂‖22 + ‖θ̂‖`1 (9)

Here Λ and θ̂ are auxillary varibles. Using these expressions
for ϕβ1 and ψβ2 , we rewrite (6) as

γ = arg min
γ,Λ,θ̂

C
(
γ,Λ, θ̂

)
, (10)

where

C = ‖A(γ)− y‖2 +
µ1β1

2
‖Γ− Λ‖2F + µ1‖Λ‖∗ +

µ2β2

2
‖γ̂ − θ̂‖22 + µ2‖θ̂‖`1 (11)

(10) requires the minimization with respect to three vari-
ables. This might sound more complicated than the original
problem (6). However, we show that its minimization with
respect to each of the variables can be performed analytically,
assuming the other variables to be fixed. These steps are
described below.

1) solve for Λ and θ̂, assuming γ to be fixed: the mini-
mization of (11), with respect to Λ and θ̂, yields

Λ = U
(

S− I
β1

)
+

V∗

θ̂ =
γ̂

|γ̂|

(
|γ̂| − 1

β2

)
+

(12)

Here,

X+ =
{
X if X ≥ 0
0 else . (13)

and Γ = USV∗ is the singular value decomposition of
the matrix Γ. The above steps corresponds to the singular
value soft thresholding of Γ and the soft-thresholding of
γ̂ respectively.

2) solve for γ, assuming Λ and θ to be fixed. Minimizing
(11) with respect to γ gives

A∗Aγ + (µ1β1 + µ2β2) γ = A∗ (y) + µ1β1λ+ µ2β2θ.
(14)

Since A is a Fourier sampling operator, we can solve
for γ analytically in k-t space

γ (k, t)∗ =


yk,t+µ1β1 eλ(k,t)+µ2β2 eθ(k,t)

1+µ1β1+µ2β2
if k, t ∈ Ξ

µ1β1 eλ(k,t)+µ2β2 eθ(k,t)
µ1β1+µ2β2

else
(15)

Here, λ̃ and θ̃ are the 2-D Fourier transforms of λ(x, t)
and θ(x, t) respectively.

Thus, the minimization of (6) can be performed by iterating
the shrinkage steps and the Fourier domain replacement.
C. Solving (5) using Huber continuation

The majorize maximize algorithm can provide fast conver-
gence to the solution of the Huber induced criterion specified
by (6), when β1 and β2 are small. However, the approximation
of the original criterion specified by (5) is poor in this case.
While, the Huber induced penalty is a good approximation of
(5) as β1, β2 →∞, the convergence of the resulting majorize-
maximize algorithm is poor.

To overcome this tradeoff between recovery rates and
convergence, we propose to use a continuation scheme. We
progressively increase β1 and β2, starting with small values.
The solution at each step is used as the initialization for the
next step.



Fig. 4. Comparison of the reconstructions with classical methods that rely
on low rank matrix recovery with different sizes of training data on free-
breathing cardiac MRI simulations: (First row: A mid systolic frame of the
first heart beat, Second row: Time profile for the y dimension at x = 32.
Third, Fourth and Fifth rows show respectively the second, third and fourth
principal components,i.e, vi(t), for i = 2 to 4.The ability of classical schemes
to capture the respiratory motion which is in the up-down direction decreases
with the size of training data. Specifically, when Nt = 1, even the third
principal component is significantly distorted in contrast to Nt = 11. The
use of these principal components to fit the under-sampled data results in
higher errors as shown in Fig. 5. In contrast, the proposed scheme is able to
reliably estimate the principal components even when A = 16.

IV. RESULTS

Our studies were performed based on a slice of a numerical
phantom which represents the heart. The cross section of
the phantom has an inner double layered dynamic circular
structure representing the beating heart and an outer stationary
chest wall. We simulated two scenarios: Cine and real time
imaging. The Cine data had a total of 50 frames with each
image frame of size 64 x 64 while the real time data had 700
frames with no constrains on the respiration and heart rates, i.e
free breathing cardiac data with heart rate variability. A pseudo
random radial trajectory was employed. The accelerated data
was simulated by subsampling the k-space by using fewer
radial lines. The experiments were performed for different
numbers of radial lines ranging from 2 to 32.

We initially demonstrate in Figure 1 that incorporating both
the low rank and sparsity penalties produce superior and
reliable reconstructions at higher accelerations as opposed to
using the low rank penalty alone. We chose the parameters µ1

and µ2 to be 0.5 based on a rigorous trial and error procedure
where in the Root Mean Square Error(RMSE) between the
reconstructions and the simulated data were studied.

We later compare our reconstructions with the classical
methods that rely on low rank matrix recovery for different
training sizes, Nt [5], [6]. The classical methods were im-
plemented using 10 and 20 principal components respectively
for the Cine and real time data sets. The RMSE between the
reconstructions and the simulated data was used as a metric
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Fig. 5. Root Mean Square Error(RMSE) as a function of net acceleration
factor for real time data: We observe similar behavioral patterns as with Cine
data where the proposed method with its simultaneous estimation and joint
penalty scheme performs significantly better than classic methods at wider
range of net acceleration factors

for the comparisons. The comparisons between the proposed
method and classical schemes were done over a wide range
of net acceleration factors, (A). A is defined as the effective
acceleration level one could achieve after taking both the
training and acquired data into account.The results of the
comparisons are demonstrated in figures 2 to 5.

V. CONCLUSION

We introduced a novel algorithm to real-time cardiac MRI
data from undersampled radial acquisitions. We significantly
accelerated the acquisitions by modeling the spatio-temporal
data to be the linear combination of a few temporal basis
functions. In contrast to classical schemes that estimate the
basis functions from central phase encodes acquired with a
high temporal sampling rate, we estimated them from the
entire undersampled data. The use of the entire data to estimate
the temporal functions resulted in significant improvement in
accuracy. By removing the need for collecting training data at
high temporal sampling rate, the proposed scheme achieved
higher acceleration factors without significant artifacts.
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