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ABSTRACT
We propose a novel blind compressive sensing (BCS) frame

work to recover dynamic images from under-sampled mea-

surements. This scheme models the the dynamic signal as a

sparse linear combination of temporal basis functions, chosen

from a large dictionary. The dictionary and the sparse coeffi-

cients are simultaneously estimated from the under-sampled

measurements. Since the number of degrees of freedom of

this model is much smaller than that of current low-rank

methods, this scheme is expected to provide improved recon-

structions for datasets with considerable inter-frame motion.

We develop an efficient majorize-minimize algorithm to solve

for the dynamic images. We use a continuation strategy to

minimize the convergence of the algorithm to local minima.

Numerical comparisons of the BCS scheme with low-rank

methods demonstrate the significant improvement in perfor-

mance in the presence of motion.

1. INTRODUCTION

Dynamic MRI (DMRI) is a key component of many clini-

cal exams such as cardiac, perfusion, and functional imaging.

Achieving high spatio-temporal resolution in DMRI is often

challenging due to fundamental hardware limitations. Sev-

eral acceleration schemes that exploit the compact structure

or sparsity in pre-determined transform domains (eg: tempo-

ral Fourier, wavelet domains) [1, 2] were introduced to ac-

celerate breath-held cardiac MRI. However, these methods

fail to give good reconstructions when the motion or con-

trast changes are not periodic because the structure/sparsity

of the signal in the Fourier transform domain is considerably

disturbed. Recently, several authors have proposed to model

the dynamic signal as a linear combination of few principal

temporal basis functions (eg: [3, 4, 5]). Since the bases and

its corresponding coefficients are directly estimated from the

data, these low-rank promoting schemes are also termed as

blind linear models (BLM). These schemes are capable of

providing high accelerations, when inter-frame motion is not

significant. However, when the inter-frame motion is large

(eg. free breathing imaging), many basis functions are re-

quired to accurately represent the signal; this often limits the
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maximum possible acceleration. Specifically, in such scenar-

ios, these methods can result in spatio-temporal blurring when

operated at high accelerations.

To overcome the above mentioned challenges, we intro-

duce a novel dynamic imaging scheme based on blind com-

pressive sensing (BCS) [6]. This is the first application of the

BCS scheme to dynamic imaging, to the best of our knowl-

edge. In classical compressive sensing, the transform or dic-

tionary is fixed. In contrast, BCS estimates the optimal dic-

tionary from the data. While this approach is similar to BLM,

the main difference is that the profiles at each voxel are mod-

eled as a sparse linear combination of basis functions from

a larger dictionary than in BLM. Since only very few basis

functions are active at each voxel, this is essentially a locally

low-rank representation. Note that the basis functions in the

dictionary are not necessarily orthogonal to each other (see

Fig. 1). The significantly larger number of basis functions

in the BCS dictionary considerably improves the approxima-

tion of the dynamic signal, especially for datasets with sig-

nificant inter-frame motion. While the approximation qual-

ity of BLM schemes can also be improved by increasing the

number of basis functions, the overhead in estimating them

grows linearly with the size of the dictionary, thus limiting the

maximum possible acceleration. Specifically, the degrees of

freedom (DOF) in the BLM representation is approximately

r(M + N − 2r), where M is the number of voxels in one

frame, N is the number of temporal frames, and r is the num-

ber of basis functions. Since the number of voxels is often

much greater than the number of frames (eg: M = 17100
and N = 50 in our application), the degrees of freedom can

be approximated as rM . In contrast, the degrees of freedom

associated with BCS is Mk + RN , where k is the average

sparsity of the coefficients and r is the number of basis func-

tions in the dictionary. Thus, the degrees of freedom in the

BCS scheme is dominated by the average sparsity and not

the size of the dictionary, for realistic dictionary sizes. Since

k << r, we expect the blind compressive sensing representa-

tion to be more compact than the blind linear model. Hence,

we expect the BCS scheme to provide improved reconstruc-

tions in datasets with significant inter-frame motion.

We introduce a novel algorithm to jointly estimate the

sparse coefficients (denoted by the M ×R matrix U) and the

dictionary of temporal basis functions (indicated by theR×N
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Fig. 1: Comparison of BCS and BLM representations of dynamic imaging data: The Casorati form of the dynamic signal Γ is shown in (a).

The BLM and BCS decompositions of Γ are shown respectively in (b), (c). BCS uses a large over-complete dictionary, unlike the orthogonal

dictionary with few basis functions in BLM. Note that the coefficients/ spatial weights in BCS are sparser than that of BLM. The temporal

basis functions in the BCS dictionary are representative of specific regions, since they are not constrained to be orthogonal. For example,

the 1st, 2nd columns of UM×R in BCS correspond respectively to the temporal dynamics of the right and left ventricles in this myocardial

perfusion data with motion. We observe that only 2-3 coefficients per pixel are sufficient to represent the dataset.

matrix V) directly from the under-sampled DMRI data. The

Casorati matrix of the dataset is the product of these matrices

Γ = UV (see Fig. 1). We pose the recovery of the coef-

ficients and the dictionary as an unconstrained optimization

problem, where we use the sparsity promoting �1 prior on the

entries of U and a Frobenius norm penalty on V. We use

a majorize minimize algorithm to simplify the problem into

three simpler problems; the proposed alternating minimiza-

tion scheme cycles through the solutions of these problems to

determine the optimal solution. We use a continuation strat-

egy using a Huber penalty, parameterized by a single param-

eter β. The penalty is quadratic in nature when β is small,

when the solution is equivalent to the nuclear norm solution,

since R >> r [7]. As we increase β, the solution converges

to that of the BCS problem. Our experiments confirm that this

approach is able to eliminate the local minima problems.

This approach has some similarity to the local low rank

scheme in [8]. However, the basis functions at each voxel are

independent from each other in [8]. In contrast, pixels that are

not close can still share the same basis functions in the BCS

method. The proposed scheme encourages the exploitation of

similarities between voxels that are far away (for eg: see the

3rd column of UM×R in Fig. 1). Hence, we expect these

non-local interactions to provide improved reconstructions.

2. BCS FOR DYNAMIC MRI

Denoting the spatio-temporal signal by γ(x, t), the goal is to

recover it from sparse noisy Fourier samples b(ki, ti):

b(ki, ti) =

∫
x

γ(x, ti) exp(−jkT
i x) + n(ki, ti). (1)

Here, (ki, ti) represents the ith sampling location in the k− t
space and n, the additive white noise. The above expression

can be rewritten in a vector form as b = A(γ) + n, where A
represents the Fourier sampling operator.

2.1. The objective function

Using the Casorati matrix representation [3], BCS models the

dynamic signal as a product of a sparse coefficient matrix U
and a dictionary matrix V containing over-complete temporal

basis functions:

ΓM×N = UM×RVR×N , (2)

Recall that the columns of Γ correspond to the voxels of each

time frame. The ith column of U contains the coefficients, of

the ith temporal basis function (ith row of the dictionary V).

We pose the simultaneous estimation of U and V subject to

data consistency constraint as:

{Û, V̂} = argmin
U,V

||A(UV)− b||22 + λ1|U|l1 + λ2||V||2F .
(3)

We use a sparsity promoting l1 norm on the entries of U
and an energy minimizing Frobenius norm on V to make the

problem well posed. We use a continuation strategy, where

we start by solving for simpler problems and progressively

update the solution to promote l1 sparsity, to minimize local

minima problems.

2.2. The optimization algorithm

We approximate the l1 norm penalty in (3) by a Huber in-

duced norm, which is parametrized by β, resulting in the be-

low cost:

{U∗,V∗} = arg min
U,V,L

||A(UV)−b||22+λ1 ϕβ(U)︸ ︷︷ ︸
≈|U|l1

+λ2||V||2F

(4)

Here, ϕβ(U) =
∑M

i=1

∑R
j=1 ψβ(ui,j) is the Huber-induced

norm; (ui,j are the entries of U). The Huber function is spec-

ified as:

ψβ(x) =

{ |x| − 1/2β if x ≥ 1
β

β |x|2 /2 else .
(5)

Note that when β = 0, the Huber norm is the quadratic Frobe-

nius norm; as shown in [7], the solution to (4) would be equiv-

alent to the minimum nuclear norm solution, since R here is
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Fig. 2: (a): Cost in (3) v/s iteration, (b): SER (dB) v/s iteration,

(c): Direct IFFT reconstruction for reference. A spatial frame of

the reconstructions (d): without continuation, fixed β = 1010, (e):

with low β = 105 and (f): with continuation, start with β = 105

and increment till β = 1010. The cost with continuation decreases

monotonically avoiding any possible local minima as seen while fix-

ing β to a large value in (d). Specifically (d) gets stuck in modeling

the basis functions corresponding to error artifacts; (compare d and

c). Also shown is the iterate during low β in (e), which is an equiv-

alent nuclear norm solution. As β is increased during continuation,

the algorithm converges to the BCS solution in (f).

greater than the rank of Γ. When β→∞, the Huber norm ap-

proximates the l1 norm and the problem in (4) approximates

the original problem in (3).
We now majorize the Huber function as:

ϕβ(U) = min
L

β

2
‖U− L‖2F + |L|l1 , (6)

where L is an auxiliary variable. Substituting (6) in (4), we

obtain the following modified cost, which has to be now min-

imized with respect to three variables U, V and L:

{U∗,V∗} = arg min
U,V,L

||A(UV)− b||22 + λ2||V||2F (7)

+λ1

[
|L|l1 +

β

2
‖U− L‖2F

]
;

We use an alternating minimization scheme to solve (7)

with respect to each variable, assuming the other two vari-

ables to be fixed. This results in the following subproblems:

Ln+1 = argmin
L

‖Un − L‖22 +
2

β
|L|l1 ; (8)

Un+1 = argmin
U

‖A(UVn)− b‖22 +
λ1β

2
||U− Ln+1||22 ;

(9)
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Fig. 3: Retrospective downsampling of a fully-sampled myocardial

perfusion data set with motion at 7.5 fold acceleration: The radial

trajectory for one frame is shown in (I.b). The trajectory is rotated

by random shifts in each temporal frame. Different schemes along

with the fully sampled data are shown in (I) to (V). (a), (b), (c),

(d) respectively show a spatial frame, corresponding error image,

image time profile, corresponding error time profile. The image

time profile in (c) is through the dotted line in (I.a). The ripples

in (I.c) correspond to the motion due to inconsistent gating and/or

breathing. The location of the spatial frame along time is marked by

the solid line in (I.c). We observe the BCS scheme to be robust to

spatio-temporal blurring, compared to the BLM schemes; eg: see the

white arrows where the details of the papillary muscles are blurred

in the nuclear norm, Schatten p-norm and the IRPF schemes while

maintained well with BCS. This is depicted in the error images as

well, where BCS (V.b) has diffused errors while the BLM schemes

(II-IV.b) have structured errors corresponding to the anatomy of the

heart. Similar behavior was seen in other frames as well, especially

in frames that contain motion and contrast variations.

Vn+1 = argmin
V

‖A(UnV)− b‖22 + λ2‖V‖2F ; (10)

(8) involves l1 shrinkage of Un and can be solved analytically

as:

Ln+1 =
Un

|Un|
(
Un − 1

β

)
+

; (11)

where ‘+’ represents the shrinkage operator defined as (τ)+ =
max{0, τ}. The problems in (9) and (10) are quadratic; we

solve it by using simple conjugate gradient (CG) algorithms.

Iterating between (8) to (10) using a high value of β can

have many CG steps (due to ill conditioning of (9)). In addi-

tion, the algorithm may converge to a local minimum if it is

initialized directly with a large value of β. Hence, we use a

continuation approach to solve for simpler problems initially

and progressively increase the complexity. Specifically, start-

ing with random matrix initializations of U and V, the algo-

rithm iterates between (8) and (10) in an inner loop, while
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progressively updating β starting with a small value in an

outer loop. The inner loop is terminated when the cost in (3)

stops decreasing and the outer loop is terminated when a large

enough β is achieved. The role of continuation in avoiding lo-

cal minima is described in figure 2 on a myocardial perfusion

data set (see section 3 for the data specifications, the sampling

mask and the BCS model order used).

3. EXPERIMENTS

We demonstrate the utility of BCS in reconstructing a my-

ocardial perfusion data set with significant motion content.

We consider retrospectively down sampling one slice from a

fully sampled Cartesian acquisition (phase × frequency en-

codes × time = 90 × 190 × 70) acquired using a saturation

recovery FLASH sequence on a Siemens 3T scanner (3 slices,

TR/TE =2.5/1.5 ms, sat. recovery time = 100 ms). The motion

in the data was due to improper gating and/or breathing; (see

the ripples in the time profile in fig 2(c)). We consider a radial

trajectory with 12 uniformly spaced rays within a frame with

subsequent random rotations across frames to achieve inco-

herency. This corresponded to a net acceleration level of 7.5.

This acceleration can be capitalized to improve many factors

in the scan (eg: increase the number of slices, improve the

spatial resolution).

A total number of 45 temporal bases were considered in

BCS. The regularization parameters λ1 and λ2 were tuned

based on maximizing the signal to error (SER) ratio between

the reconstructions and the fully sampled data.

SER = −10 log10
‖Γrecon − Γorig‖2F

‖Γorig‖2F
(12)

We observe that setting λ2 significantly lower than λ1 yields

better reconstructions. We evaluated different continuation

schemes in terms of speed of convergence to the same solu-

tion (different thresholds in the inner loop and different incre-

ments of β in the outer loop). We picked the best one which

converged in about 45 mins using a MATLAB implementa-

tion on a linux work station with a quad core AMD processor

and 16 GB RAM. We expect a significant speedup by using

methods such as the augmented Lagrangian [9] and by cap-

italizing on the parallelism in the code and using graphical

processing units.

We compare BCS algorithm against the following BLM

schemes: (a) nuclear norm (NN) minimization [5], (b) Schat-

ten p-norm (Sp-N) (p = 0.1) minimization [5] and (c) in-

cremented rank power factorization (IRPF) schemes [4]. A

total of 14 bases were considered in the IRPF method. The

optimum number of bases in IRPF, optimum regularization

parameters in NN and Sp-N were chosen based on maximiz-

ing the SER between the reconstructions and the fully sam-

pled data. We observe BCS to obtain efficient reconstruc-

tions, which are robust to several compromises observed with

the BLM schemes. Specifically, at this acceleration level, the

frames with significant motion content and contrast are con-

siderably blurred with the BLM methods, due to aggressive

rank reduction. In contrast as the BCS scheme promotes ef-

ficient selection of the temporal bases, it robustly represents

these regions with minimum spatio-temporal blur.

4. CONCLUSION

We introduced a novel frame work for blind compressed sens-

ing in the context of dynamic imaging. The model represents

the dynamic signal as a sparse linear combination of tem-

poral basis functions from a large dictionary. An efficient

majorize-minimize algorithm with continuation was used to

simultaneously estimate the sparse coefficient matrix and the

dictionary bases. Results against low rank models show sig-

nificant improvement with the proposed scheme in being ro-

bust to spatio-temporal blurring and efficiently preserving fine

structural details in the reconstructions.
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