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ABSTRACT

Routinely trade-offs between the spatio-temporal resolution,
volume coverage and SNR are done in first pass cardiac per-
fusion MRI due to the restricted imaging acquisition window
(usually of the order of 300 to 400 msec per heart beat). In this
paper, we demonstrate the use a low rank and sparse recon-
struction scheme (k − t SLR) in obtaining highly accelerated
first pass perfusion MR images and hence aim to reduce the
above mentioned trade-offs. We introduce non-convex spec-
tral norms and use a spatio-temporal total variation norm in
recovering the dynamic signal matrix. We introduce an aug-
mented Lagrangian optimization scheme in the context of ma-
trix recovery to speed up the convergence of the algorithm.
Extensive validations on in-vivo data are done to demonstrate
the performance improvement of the proposed frame work.

1. INTRODUCTION

First pass cardiac perfusion magnetic resonance imaging
(MRI) has been gaining significant clinical importance due
to its potential to assess coronary artery disease. Perfusion
imaging track the dynamic variations of a contrast agent as
it traverses through different regions of the heart. The ac-
quisition window is typically restricted to the diastolic phase
to minimize the motion interference due to cardiac pump-
ing. The need for acceleration to acquire images within this
limited imaging window is of prime importance to reduce
the compromises between the spatial resolution, temporal
resolution, SNR and slice coverage.

Several accelerated k− t reconstruction schemes that rely
on the structure or sparsity in x−f space have been proposed
[1, 2]. These schemes are originally designed for breath held
applications and for representing signals which are approxi-
mately periodic such as in cardiac cine imaging. The x − f
space’s structure and sparsity are disturbed due to the bolus
passage and motion (usually present in long breath hold or
free breathing studies) limiting the application of these meth-
ods to perfusion imaging [3]. Recently, the interest has been
on Karhunen Loeve Transform (KLT ) / Principal Compo-
nent Analysis (PCA) schemes that exploit the inherent redun-
dancy of dynamic data without explicitly modeling the tem-
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poral variations. These schemes estimate the temporal bases
from the data itself and hence are guaranteed to provide a
compact representation, making it an attractive tool for accel-
erated first pass perfusion imaging. However, the practical
realization of these schemes have trade offs between suppres-
sion of spatial aliasing and accurate temporal modeling [4].
We recently proposed a regularized frame work with low rank
and sparsity penalties that breaks this trade off and recovers
the temporal bases and spatial weights directly from the mea-
sured data [5]. In this paper, we further improve our frame
work by introducing the following modifications and demon-
strate its feasibility in acquiring highly accelerated first pass
perfusion images:

• Use of non convex spectral priors: Motivated by im-
proved performance of lp penalties compared to l1 in
compressed sensing, we propose to use the non convex
Schatten p-norm matrix penalty. Specifically, this term
weights the small singular values/vectors, which often
correspond to aliasing artifacts, more heavily than oth-
ers, thus suppressing them in the reconstructions; this
provides reconstructions with better fidelity for a spec-
ified acceleration factor.

• Use of spatio-temporal total variation sparsity priors:
Our implementation in [5] was for ungated real time
cardiac MRI, where we used the sparsity penalty in
the x − f space. In this work, we propose to exploit
the sparsity of the gradients of the data in the spatio-
temporal directions by using the total variation (TV)
norm.

• Use of augmented Lagrangian optimization solver: The
convergence of the continuation optimization scheme
used in [5] was sensitive to the specific choice of the
continuation parameters. In this work, we address this
by introducing an augmented Lagrangian (AL) solver
that considerably improves the convergence properties.

2. IMPROVED k − t SLR

In first pass perfusion imaging, different anatomical regions
of the heart (such as the voxels within the right ventricle or
the myocardium) share similar temporal characteristics. This



property allows us to assume the voxel time series to lie in
a low-dimensional space. Specifically the dynamic signal
γ(x, t) can be represented as a matrix that has linearly depen-
dent rows i.e, low rank (see equations 1 to 4 in [5]; here, we
use the same notations).

We pose the recovery of both the temporal bases and spa-
tial weights as a regularized matrix recovery problem with
low rank and sparsity penalties. Specifically, we recover Γ by
using a non convex spectral norm and exploit the sparsity of
the row and column spaces of Γ by using the total variation
norm. We formulate the problem as:

Γ∗ = argmin
Γ
‖A (Γ)− y‖2 + λ1 ϕ (Γ) + λ2 ψ (Γ) , (1)

The non convex spectral norm ϕ(Γ) = (‖Γ‖p)p =∑min{m,n}
i=1 σp

i penalizes the small singular values often as-
sociated with artifacts more strongly than the convex nuclear
norm (p = 1). The use of the TV prior restricts the search
space to smaller class of matrices by penalizing irregular so-
lutions whose left and right singular vectors are not sparse;
this property can allow for efficient recovery of Γ from very
few measurements. The TV norm based on the gradient of
the entire volume is specified by

ψ(Γ) =

∥∥∥∥∥∥
√√√√ 2∑

i=0

|Φ∗i ΓΨi|2
∥∥∥∥∥∥
`1

(2)

where Φ0 = Dx;Ψ0 = I, Φ1 = Dy;Ψ1 = I, and Φ2 =
I;Ψ2 = Dt; Dx, Dy and Dt are the finite difference matrices
along x, y, and t respectively.

2.1. The augmented Lagrangian (AL) solver

We first convert (2) to an equivalent constrained problem,
which is easier to solve, by introducing two auxiliary vari-
ables S and T

Γ∗=arg min
Γ,S,T

‖A (Γ)− b‖2 + λ1(‖S‖p)p + λ2

∥∥∥∥∥∥
√√√√ 2∑

i=0

‖Ti‖2

∥∥∥∥∥∥
`1

s.t. Γ = S; Ti = Φ∗i ΓΨi; i = 0, 1, 2 (3)

We now solve the above constrained problem using the AL
method (also termed as the multiplier method) [6, 7]. Specif-
ically, we consider the following modified cost function:

D = ‖A (Γ)− b‖2 + λ1(‖S‖p)p + λ2

∥∥∥∥∥∥
√√√√ 2∑

i=0

‖Ti‖2

∥∥∥∥∥∥
`1

(4)

+β1 ‖Γ− S‖2/2 + β2

2∑
i=0

‖Φ∗i ΓΨi −Ti‖2/2 +

β1 〈X,Γ− S〉+ β2

2∑
i=0

〈Yi,ΦiΓΨi −Ti〉
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Fig. 1: Convergence analysis: The continuation scheme is highly de-
pendent on the increments of the continuation parameters. Here we
demonstrate two specific cases. The augmented Lagrangian method
converges in 25 iterations, while the best continuation (the fastest)
scheme takes 120 iterations. The computational complexity for these
3 schemes on the GPU were 1.8 min (augmented Lagrangian), 8.2
min (Fast continuation) and 9.5 min (Slow continuation).

where X and Yi are matrices of Lagrange multipliers and
the inner product of two matrices is specified by 〈A,B〉 =
trace(ATB). Penalty methods (without the Lagrange mul-
tiplier terms; i.e, the third line of (4)) with continuation al-
ternately minimize the variable of interest and the auxiliary
variables while slowly taking the values of β1 and β2 to high
values to enforce the constraints in (3). However, when β1, β2
grow large, the problem gets ill-conditioned leading to more
number of conjugate gradient steps and hence slow conver-
gence. The AL method has been shown to ensure fast con-
vergence. Moreover it does not require β1 and β2 to tend to
high values [6, 7]. In contrast to the three step minimization
scheme used in [5], we propose to use a five step AL scheme
which requires to additionally update X and Yi:

Γn+1 = argmin
Γ
‖A (Γ)− b‖2 + β1

2
‖Γ− (Sn −Xn) ‖2 +

β2
2

2∑
i=0

‖Φ∗i ΓΨi − (Ti,n −Yi,n) ‖2 (5)

Sn+1 = argmin
S
‖ (Γn+1 + Xn)− S‖2 + λ1/2β1 (‖S‖p)p (6)

Ti,n+1 = arg min
{Ti}

2∑
i=0

‖Φ∗i Γn+1Ψi + Yi,n︸ ︷︷ ︸
Pi

−Ti‖2 +

λ2/2β2

∥∥∥∥∥∥
√√√√q−1∑

i=0

‖Ti‖2

∥∥∥∥∥∥
`1

; i = 0, 1, 2 (7)

Xn+1 = Xn + (Γn+1 − Sn+1) (8)
Yi,n+1 = Yi,n + (Φ∗i Γn+1Ψi −Ti,n+1) ; i = 0, 1, 2. (9)

We propose to solve the quadratic minimization problem,
specified by (5), using a few iterations of the conjugate gra-
dient (CG) algorithm. Since we do not have to use very high
values of β1 and β2, the CG scheme requires few number of
steps (around 3-4) in most cases. (6) is solved as the singular
value shrinkage below (10):

Sn+1 =

max(m,n)∑
i=0

(
σi − λ1 σp−1

i /β
)
+

uiv
∗
i , (10)
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Fig. 2: SER v/s acceleration for different schemes: k-t SLR out per-
forms most of the methods consistently at a range of accelerations.
The difference between k-t SLR and TV increases at accelerations
greater than 5. Visual comparisons at R ≈ 11 are shown in figure 3.

where ()+ is a shrinkage operator that returns the input when
its greater than zero else returns zero. The solution of (7)
involves the joint processing of all the terms Pi; i = 0, 1, 2,
such that the magnitude

∑2
i=0 ‖Pi‖2, is shrunk:

Ti,n+1 =
Pi∑2

i=0 ‖Pi‖2
·

(
2∑

i=0

‖Pi‖2 −
λ2
β2

)
+

(11)

where Pi = Φ∗i Γn+1Ψi + Yi,n. This approach is termed
as multidimensional shrinkage of {Pi, i = 0, 1, 2} [8]. The
steps (8) and (9) are the updates of the Lagrange multipliers
X and Yi; i = 0, 1, 2 and are standard. Using continuation
in AL frame work is usually recommended to further increase
the convergence. Hence, we initialize β1 > 0 and β2 > 0
as small values and gradually increase them. Thanks to the
fast convergence of the AL scheme, we do not require care-
fully designed continuation strategies or increase the penalty
weights to very high values.

3. RESULTS

We show the performance evaluation on an in-vivo first pass
perfusion data set acquired on a 3T Siemens scanner at the
University of Utah in accordance with the institute’s review
board. The data was acquired on a Cartesian grid with 90
phase encodes and a temporal resolution of one heart beat.
190 readouts and 70 time frames were obtained. The subject
was not able to hold his breath for the entire imaging duration
and the data contained residual breathing motion. We imple-
mented the entire algorithm, described by (5)-(9), in MAT-
LAB using Jacket on a Linux workstation with eight cores
and a NVDIA Tesla graphical processing unit. The computa-
tionally expensive component of the algorithm is the singular
value decomposition required for (7). The size of the Γ ma-
trix was 17100 x 70. We implemented the SVD as the eigen
decomposition of ΓHΓ. The left singular vectors are obtained
using a simple least squares scheme. The eigen decomposi-
tion of a 70x70 matrix takes less than 0.1 seconds. The entire
algorithm is computationally efficient and usually took 90 to
150 seconds of execution time.

3.1. Convergence of the algorithm

In figure 1, we describe the convergence of the proposed
scheme using the continuation scheme and AL method. We
observe a significant speed up (four to five fold) in our appli-
cation by using the AL method. It is seen from figure 1 that
the AL scheme converges very fast while the continuation
schemes depend on the choice of β1 and β2 increments.

3.2. Comparison with different methods

We compare our k − t SLR method against the following
state of the art acceleration schemes at a range of accelera-
tions (R); (R is defined as the ratio of the actual number of
acquired phase encodes to the number of encodes used in the
reconstruction):

• Conventional two step KLT schemes [4] that rely on
a training data set with low spatial but high temporal
resolution to estimate the temporal bases and uses it to
estimate the spatial weights from sparse k− t samples.
We consider a range of training data sizes.

• A model based x − f scheme: We consider k − t FO-
CUSS [9] which has shown to be an improvised version
of related methods like k − t BLAST and UNFOLD.

• Regularized schemes that rely only on using (a) the
spectral penalty (λ2 = 0) or (b) the TV penalty (λ1 =
0)

The conventional KLT scheme uses Cartesian trajectories.
All the other schemes uses an equi-angled radial trajectory
in each frame which is rotated by a random angle across
frames to achieve incoherent sampling. All the schemes were
initialized with the zero filled IFFT reconstructions and were
iterated until convergence. We use the signal to error ratio as
measure to provide a quantitative index of the performance.

SER = −10 log10
‖Γrec − Γfullysampled‖2F
‖Γfullysampled‖2F

, (12)

where ‖ · ‖F is the Frobenius norm.
It is seen from figure 2 that k − t SLR out performs its

closest competitors by 1-2 dB at most accelerations. The per-
formance of TV based regularizer is close to k− t SLR at low
accelerations (R < 5). However at higher accelerations, it
results in significant spatial smoothing and loss of details as
demonstrated in figure 2.

In figure 3, we show visual comparisons at a high accel-
eration (R ≈ 11). We observe compromise in the spatial
quality at the expense of accurate temporal modeling in the
KLT scheme, motion blur in k− t FOCUSS due to the failure
of meeting sparsity constraints in the x − f space, residual
streak artifacts and over smoothing respectively in using only
the spectral and the TV penalties which are all minimized in
k − t SLR.
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Fig. 3: Comparisons on in-vivo data at 11 fold acceleration: The first column of the left shows the fully sampled data, while columns 2 to
7 show the reconstructions using direct IFFT, best of the conventional two-step KLT schemes, k − t FOCUSS method, Spectral penalty, TV
and the k − t SLR scheme. We choose R = 11.2 for all the methods except the two-step KLT, which is at an acceleration of R = 10.2. The
KLT scheme that had the best SER was picked (see Fig. 2). The top row shows the reconstructed frames at peak LV uptake, the second row
shows peak myocardial uptake, the third row shows post contrast during breathing and the bottom row shows the image time series (x − t
plot) corresponding to the dotted arrow in (c). The temporal instances of the spatial frames shown in the top three rows are marked in the
image time series of the fully sampled data. We observe that the reconstructions with the two-step KLT scheme exhibit significant spatial
aliasing, indicated by arrow. The k− t FOCUSS reconstructions exhibit temporal inaccuracies, which can be appreciated from the time series
images in the bottom row. The spectral penalty has noisy artifacts as shown by the arrows in the corresponding inset of (a). Over smoothing
and blurring of important details such as the borders of the heart and the papillary muscles are seen in the TV reconstructions. In contrast, the
k − t SLR scheme gives efficient reconstructions with minimal blurring.

4. CONCLUSIONS

We demonstrated the utility of k-t SLR in acquiring highly
accelerated first pass perfusion images. The method of k −
t SLR was improved to cater to the requirements of perfu-
sion imaging, where we used non convex spectral priors and
spatio-temporal TV norms. The use of the augmented La-
grangian optimization solver provided a significant (4 to 5
fold) improvement over continuation schemes in the compu-
tational speed of the algorithm. Our results demonstrate effi-
cient reconstructions with k − t SLR at accelerations as high
as 11 fold, while most of the existing schemes suffer from
artifacts. These improvements could be practically used to
obtain high spatio-temporal resolutions and volume coverage
in first pass perfusion imaging.
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