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Abstract—We introduce a novel algorithm to recover sparse and
low-rank matrices from noisy and undersampled measurements.
We pose the reconstruction as an optimization problem, where
we minimize a linear combination of data consistency error,
nonconvex spectral penalty, and nonconvex sparsity penalty. We
majorize the nondifferentiable spectral and sparsity penalties
in the criterion by quadratic expressions to realize an iterative
three-step alternating minimization scheme. Since each of these
steps can be evaluated either analytically or using fast schemes,
we obtain a computationally efficient algorithm. We demonstrate
the utility of the algorithm in the context of dynamic magnetic
resonance imaging (MRI) reconstruction from sub-Nyquist sam-
pled measurements. The results show a significant improvement
in signal-to-noise ratio and image quality compared with classical
dynamic imaging algorithms. We expect the proposed scheme to
be useful in a range of applications including video restoration
and multidimensional MRI.

Index Terms—Dynamic magnetic resonance imaging (MRI), low
rank, majorize minimize, matrix recovery, sparse.

I. INTRODUCTION

HE RECOVERY of a low-rank or approximately low-
T rank matrix from very few measurements of its entries
has received a lot of attention in recent years, mainly due to its
application in machine learning, computer vision, and recom-
mendation systems [1], [2]. Our own motivation in this area is
to use this framework to recover dynamic imaging/video data
from sparse and noisy measurements. Several researchers have
posed the reconstruction of dynamic image data as the recovery
of a low-rank Casorati matrix, whose columns correspond to
spatial pixels and rows correspond to temporal intensity varia-
tions of the pixels [3]-[7]. In addition, the low-rank matrix may
be known to be additionally sparse in a specified domain. For
example, each of the frames of a dynamic imaging data set is
a natural image and can hence have sparse wavelet coefficients
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or gradients [8]. It is known that sparsity and low-rank proper-
ties are somewhat complementary [1]; most randomly selected
low-rank matrices are not sparse, and most sparse random ma-
trices are not of low rank [9]. However, there are matrices that
are simultaneously sparse and of low rank. For example, a ma-
trix with only one nonzero entry will have a sparsity of one and
will be of unit rank. We exploit the fewer degrees of the freedom
of the set of matrices that are simultaneously sparse and of low
rank, as compared with only sparse or only low-rank matrices,
to significantly reduce the number of measurements. We, as well
as other researchers, have demonstrated the utility of modeling
dynamic imaging data set as sparse and low-rank Casorati ma-
trices [5], [6], [10], [11].

In this paper, we focus on nonconvex spectral and sparsity
penalties to further decrease the number of measurements
required for recovery. Specifically, we consider Schatten-p
functionals, which are the extensions of the classical nu-
clear-norm spectral penalty. This choice is inspired by the
recent success of nonconvex compressed sensing schemes
that rely on £,;p < 1 penalties [12], [13]. Similar to the £,
vector penalty, the Schatten-p functions cease to be norms and
are nonconvex for p < 1. We also use nonconvex sparsity
penalties as in [12]-[14]. Thus, we pose the recovery of the
sparse and low-rank matrices as a nonconvex optimization
problem, where the cost function is a linear combination of
the data consistency term, the nonconvex spectral penalty, and
the nonconvex sparsity penalty. Most of the current matrix
recovery algorithms are variants of iterative singular-value
thresholding (IST) [15]-[17]. Unfortunately, it is not easy to
adapt this scheme to our case since our penalty is a linear
combination of nonconvex spectral and sparsity functions; it
is difficult to efficiently evaluate the proximal mapping of the
linear combination of penalties. It may be possible to extend
the algorithm in [18], which relies on multiple proximal projec-
tions, to solve the matrix recovery problem with convex priors.
However, the proximal projections will not have closed-form
expressions when nonconvex penalties are used, making the
efficient implementation of these schemes challenging.

We introduce a novel majorize-minimize (MM) algorithm to
recover sparse and low-rank matrices from undersampled mea-
surements. In contrast with current matrix recovery schemes
that majorize the data consistency term, we majorize each of
the penalty terms with quadratic functions. We use the property
of unitarily invariant matrix penalties to majorize the spectral
penalty. This majorization of the penalty terms enables us to
solve for the matrix using a three-step alternating minimization
scheme with closed-form shrinkage rules. The iterative algo-
rithm alternates between the three simple steps: 1) the solution
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of a linear system of equations; 2) a singular value shrinkage;
and 3) a gradient shrinkage. The linear system of equations can
be solved using either analytical expressions or a few conjugate
gradient (CQG) steps. Both the shrinkage steps are obtained as
the proximal mappings [19] of new matrix functions, which are
related to the original spectral and sparsity penalties. Due to the
property of convex conjugate matrix functions, these shrinkage
rules have analytical expressions, even when nonconvex penal-
ties are used. Since each step of the algorithm can be evaluated
analytically or using fast schemes, the algorithm is computation-
ally very efficient. The proposed MM scheme is equivalent to
the variable splitting (VS) scheme, which was introduced in our
earlier work [6], when nuclear-norm and total-variation (TV)
penalties are used. However, the proximal projections in the VS
scheme do not have closed-form expressions when nonconvex
penalties are used. While the proximal projections can be ap-
proximated, as shown in [20], we observe that the resulting ap-
proximate VS algorithm is significantly slower than the corre-
sponding MM scheme. We also introduce a continuation scheme
to accelerate the convergence of the algorithm. In addition to
providing fast algorithms, this approach makes the algorithm
robust to local minima. Specifically, we use a sequence of cri-
teria with gradually increasing complexity while using the so-
lution from the previous iteration to initialize the new criterion.
Similar homotopy continuation schemes are used in nonconvex
compressed sensing to minimize local-minimum effects [21].
The rest of this paper is organized as follows: We briefly
review the background literature in Section II to make this
paper self-contained. We introduce the MM algorithm in
Section III, whereas its numerical implementation is described
in Section IV. We study the convergence of the algorithm and
its utility in practical applications in the results in Section V.

II. BACKGROUND

A. Matrix Recovery Using Nuclear-Norm Minimization

Current theoretical results indicate that matrix I' € R™*™
of rank ;7 < min(m,n) can be perfectly recovered from its
linear measurements b = A(T') [1], [2]. This recovery can be
formulated as the following constrained optimization problem:

I = argmin | A(T) ~ b||* such that rank (I') < 7. (1)

To realize computationally efficient algorithms, the afore-
mentioned problem is often reformulated as an unconstrained
convex optimization scheme, i.e.,

I = argmin [|AT) - b||* + ATl 2)

e(r)
where |||, is the nuclear norm of matrix I' =
Z;n:“;(m’") o;u; v, This penalty is the convex relax-

ation of the rank and is defined as the sum of the singular
values of T ||T], = Yo mintmn) o,

B. MM Algorithms

MM algorithms rely on a surrogate function S(I',T',,) that
majorizes the objective function C(T') using the current iterate
T',,. The surrogate function is equal to the objective function at
tangent ', [i.e., S(I';,T,) = C(I',)] and is larger than the
objective function elsewhere, i.e.,

S, T,) >c() vT. 3)

The successive minimization of the majorant function
S(T',T,,) ensures that the cost function C(I') monotonically
decreases. This property guarantees global convergence for
convex cost functions. We rely on homotopy continuation
schemes to minimize local-minimum problems, when non-
convex cost functions are used.

C. Matrix Recovery Using IST

The common approaches to solve for (2) involve different fla-
vors of IST [15]-[17]. These schemes majorize the data-consis-
tency term in (2) with the following quadratic expression:

IAT) = b||” < 7|IT' = Zn|* + c,.. “4)
Here, 7 is a constant such that 7Z > A!A, ¢, is a constant

that is independent of T, and Z,, = T',, — A*(A(T,,) — b)/7.
Here, 7 is the identity operator. Thus, we have

C(T) < 7|0 = Zy || + A||T]|« +en. 5)

Cmaj(T)

The minimization of the aforementioned expression is termed
as the proximal mapping of Z,,, associated with the nuclear-
norm penalty [19]. This proximal mapping has an analytical so-
lution [15], i.e.,

min(m,n)

I‘n-l-l = Z (O',; — )\/27’)4_117‘, V{{ (6)

i=1

where u; and v; are the singular vectors and o; values are the
singular values of Z,,. The thresholding function in (6) is de-
fined as

ifo>0
else.

J?
=15 )
Unfortunately, it is not straightforward to adapt this algorithm
to optimization schemes with multiple nondifferentiable penalty
terms (e.g., spectral and sparsity penalties), as previously dis-
cussed.

D. Unitarily Invariant Matrix Functions

We focus on the general class of unitarily invariant spectral
penalties, which satisfy the following property:
VI e R™*"

#(T) = $(VT'U) VUeU, VYV EU,.

®)
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Here, U,,, is the set of m x m unitary matrices. The afore-
mentioned definition implies that ¢(I") is invariant to pre- and
postmultiplication of I by unitary matrices. This class has sev-
eral attractive properties, which are valuable in realizing fast al-
gorithms. Specifically, Lewis has shown that unitarily invariant
convex matrix functions are fully characterized by composite
functions of the singular values of the matrix [22]. If (T") de-
notes the min(m, n) dimensional vector of singular values of T',
any unitarily invariant penalty can be specified as

€))

Here, p : R™in(mn) ., R is a function that is invariant
under sign changes and permutations of the elements of o/(T").
An interesting case is when p(6) = 70" 4(0,), where
i R — R is a function that is invariant to sign of ;. This
class includes most of the spectral penalties of practical in-
terest. For example, the Schatten-p spectral norms correspond
to (o) = |o|P. These penalties are convex and are norms
when p > 1. Clearly, the nuclear norm is a special case of
Schatten-p norms, when p = 1. Due to the results in [22],
many of the properties of vector functions can be extended
to matrices. For example, the subgradient of ¢(I") is given
by [22] 9¢(T) = {Udiag(6)V*|6 € 9Ip(a(I'))}. Here,
I' = Udiag(o(T"))V* is the singular-value decomposition of
I'. When p(o) = >, pu(0i), we have

min(m,n)

0¢((T) = Z ou(oi)u; viH (10)
i=1

where Opu(0;) is the subgradient of (o). Similarly, the convex
conjugate of unitarily invariant penalties can be easily derived
in terms of the convex conjugates of the corresponding ;. func-
tions. We use these results to extend the MM algorithms, which
are originally developed for vector recovery, to matrix recovery
problems.

E. Dynamic Imaging Using Matrix Recovery Schemes

Our motivation in developing this algorithm is to use it in dy-
namic imaging and video restoration. We denote the spatiotem-
poral signal as y(x, t), where x is the spatial location and ¢ de-
notes time. We denote the sparse and noisy measurements to be
related to v as b = A(v) + n, where A is the measurement
operator and n is the noise process. The vectors corresponding
to the temporal profiles of the voxels are often highly correlated
or linearly dependent. The spatiotemporal signal v(x,¢) can be
rearranged as a Casorati matrix to exploit the following correla-
tions [3], [4], [6], [7]:
v(X0, o) V(X0; tn—1)

T = an

V(X’m—hto) ’y(xm—htn—l)

The ith row of I corresponds to the temporal intensity varia-
tions of voxel x;. Similarly, the jth column of I" represents the
image at the time point Z;. Since the rows of this 1 x n matrix are
linearly dependent, the rank of I is given by r < min(m, n). We
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will refer to the dynamic imaging data set either as y(x, t) or as
T in the remaining sections. The low-rank structure of dynamic
imaging data sets was used to recover them from undersam-
pled Fourier measurements by several authors [3], [4], [6], [7],
[23]. These schemes rely on either simpler two-step algorithms,
which are relatively inefficient at high acceleration factors, or
greedy low-rank decomposition schemes. In contrast with these
methods, the proposed scheme is computationally efficient, ac-
curate, highly flexible, and capable of using multiple nonconvex
spectral and sparsity priors.

III. MM ALGORITHM FOR MATRIX RECOVERY

We introduce the problem formulation and the algorithm
here. The details of the numerical implementation are covered
in Section IV.

A. Matrix Recovery Using Sparsity and Spectral Penalties

To exploit the low rank and the sparsity of the matrix in the
transform domain (specified by R and C), we formulate the ma-
trix recovery as the following constrained optimization scheme:

= argmri‘n |A(T) - b]®
such that {rank(T) < r, |R¥T'C|, < K}. (12)
We rewrite the aforementioned constrained optimization

problem using Lagrange’s multipliers and relax the penalties
to obtain

I = argmin [ A(T) ~ b + A1 6(T) + b (T).  (13)

Here, the spectral penalty ¢ is the relaxation of the rank con-
straint. We choose it as the class of Schatten-p matrix penalties
(u(c) = (o)P), specified by

min(m,n)

> o).

i=1

(14)

Similarly, we specify the sparsity penalty as (I') =
|IRETC|E? , which is the £,, norm of the matrix entries,
P2
specified by

TN = [T 0P (15)
i

When p; and po > 1, the cost function (13) is convex and
hence has a unique minimum. We now generalize the sparsity
penalty to account for nonseparable convex and nonconvex
TV-like penalties, i.e.,

b() = / V(DI dxds (16)
R3

which are widely used in imaging applications [24], [25]. The
aforementioned penalty is often implemented using finite-dif-
ference operators. Rewriting the aforementioned expression in
terms of matrix I', we get

(L) = o(P) = P[5, (17)
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where P = ! IRETC;|2. Here, R; and C,,
1 = 1,...,q, are matrices that operate on the rows and the
columns of I', respectively. The nonseparable gradient penalty
in (16) is thus obtained when P, P, and P53 correspond to the
finite differences of v(x, t) along z, y, and ¢, respectively; R;
and C,; are the corresponding finite-difference matrices.

Gao et al., have recently used a linear combination of sparse
and low-rank matrices [26] to model dynamic imaging data set
and recover it from undersampled measurements. They chose
the regularization parameters such that the low-rank component
is the static background signal. The dynamic components are
assumed to be sparse in a preselected basis/frame, which is
enforced by a convex sparsity prior. The use of a sparse model
to capture the dynamic components is conceptually similar
to classical compressed sensing dynamic imaging schemes
[27]-[29]. We have shown that the basis functions estimated
from the data itself (using low-rank recovery) are more effec-
tive in representing the data compared with preselected basis
functions, particularly when the significant respiratory motion
is present [6]. We plan to compare the proposed scheme with
the model in [26] and other state-of-the-art dynamic imaging
schemes in the future.

B. Algorithm Formulation

We now derive a fast MM algorithm to solve (13). Specifi-
cally, we majorize the penalty terms by quadratic functions of

T ie,
B

$(T) = min - [T = WI[E +n(W) (18)
_ . o
W)= G min T Zuch Q2
+ 60 (19)

Here, W and Q;,¢ = 1, ..., ¢, are auxiliary matrix variables,
and ||T'||r is the Frobenius norm of I'. By definition, n(W)
and 6(/) ", |Q;|?) are matrix functions that are dependent on
$(W) and ¢(P), respectively.

Analytical expressions for 7 and # can be derived in many
cases, as shown below. However, we find in Section IV that
analytical expressions for 77 and € are not required for efficient
implementation. Using the aforementioned majorizations, we
simplify the original cost function in (13) as

(I, W {Qi})opt = arg I",VI\?,ini C(T, W, Q) (20)
where
¢ = JAD) -y q
# S0 W+ 252 3D IR, - Qi
+ A n(W)+ A2 0 2n

We propose to use an iterative alternating minimization
scheme to minimize the aforementioned criterion. Specifically,
we alternatively minimize (21) with respect to each of the
variables, assuming others to be fixed. We denote the nth
iterate of these variables as I',, W,,, and Q; »;7 = 1,...,4¢,
respectively. One iteration of this scheme is described below.

1) Derive I, 41, assuming W = W, and Q; = Q; », i.e.,
. A ﬂ
Lpy1 = argmin [|AT) — yl? + ST - Wl
)\2ﬂ2

Z IR.T'Ci — Q% (22)

Since this expression is quadratic in I', we derive the
analytical solutions for many measurement operators in
Section IV.

2) Derive W11, assumingI' = I, 14, i.e.,
W, 41 = arg H\l}\i]n %HI‘,LH — W|% + n(W). (23)
The optimal W is thus obtained as the proximal mapping
of I';, 41, corresponding to the spectral penalty . We de-
rive analytical expressions for this step for the widely used
nuclear-norm and Schatten-p functionals in Section I'V.

3) Derive Q; 41, assuming ' =T, 44, i.e.,

q
Qint1 = arg %in1 % Z; |IRT,+1Ci — Qill%

q

SlQil?

i=1

+0 4)

The optimal {Q,i = 1,...,q} is thus the proximal
mapping of {R,;I",,11C;;i = 1,...,¢}, associated with
the matrix penalty 6. Since 6 is nonseparable, the corre-
sponding shrinkage involves the simultaneous processing
of the component matrices R;I',11Ci;i = 1,...,q.
This step also has analytical expressions, as shown in
Section IV.

C. Expression of n(W)

We now focus on determining function 7, such that the ma-
jorization of the spectral penalty term in (18) holds. Since ana-
lytical expressions for 77 and # are not essential to realize an ef-
ficient algorithm, readers may skip this section and go directly
to Section IV.

We reorder the terms in (18) to obtain

ITIE  ¢(T)
2 f
g(T)

= max (0, W) = ([W[3/2 + n(W

FOW)

)

(25)

Here, (W,T) = trace(WTT) is the inner product of two

matrices. From the theory in [22], the aforementioned relation

is satisfied if g(T") is a convex function and f = g* is the convex
dual of g, i.e.,

g (W) = max (W, T) - g(T) 26)
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Fig. 1. Huber approximation of the spectral penalty and the corresponding 7
function. Note that the approximation of the original spectral penalty by the
Huber function improves with increasing values of 3. Clearly, large values of
3 are required to approximate Schatten-p norms; p < 1. It is observed that
n(x) = |x|, V3, when p = 1. Hence, the VS interpretation (see Section IV-E)
is equivalent to the MM scheme. However, this equivalence breaks down when
p < 1. Specifically, 7(I") — ||T'||2 only when 3 — co. (a) p = 1; 3, = 0.1.
b)yp =1;8 =5.(c)p = 1;8, = 1000.(d) p = 0.5;3, = 0.1. (e)
p=0.5;8 =5.(f) p = 0.5; 3, = 1000.

Note that ¢ need not be convex for the aforementioned rela-
tion to hold. This majorization is valid if g(T') is convex, which
is possible even when ¢ is concave. Due to the property of uni-
tarily invariant functions, the dual of a specified matrix function
9(T') = > ug(04(T)) is obtained as

FW) =" 115 (0i(W)).

Thus, pf(-) = py(-) is the convex conjugate of 114(-). From
the aforementioned relations, we have n(W) = 3 i, (0;(W)),
where i, (z) = fh (i (x) — 2/2).

We now approximate the nondifferentiable ¢ penalties by
continuously differentiable Huber functionals. These approxi-
mations are required to ensure that g(I') is convex. In addi-
tion, the differentiability of ¢ also provides additional simpli-
fications.

1) Nuclear norm: We approximate the nuclear-norm penalty

[Tl = 22 04(I) as ¢4, (T) = 3, prgs, (04(T)). Here,

s, (z) is the standard scalar Huber function, i.e.,

27

x| = 1/261, ifz> 5
A TS ’

Note that ¢g, (I') — ||T'||« as #1 — oo. With this choice,
the corresponding g(I') = >~ p,(0;(T)) is given by

ug@s):{%(ﬂc—ﬂ%)z
0

Note that g is convex for any (1. Using the property of
convex conjugate functions described earlier, we find in the
Appendix that p,, = w. Thus, we have n(W) = ||[W]||.,
V.

2) Schatten-p norm: We approximate the Schatten-p matrix
norm by the corresponding Huber matrix function, i.e.,

_7;_:7 —1/(2ap7), ifz> [3;/(1)—2)
a2, else.

(28)
else.

. 1
lfl'ZE

else.

(29)

Ies, () = (30)
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Here, & = p/(2 — p). The threshold specified by [ﬁ/("_Q)
and constant 1/(2a/37") is chosen such that p4, is continu-
ously differentiable and 11, is convex. The aforementioned
formula is essentially an extension of the generalization
proposed by [24] to matrix functionals. It is difficult to de-
rive analytical expressions for y, (w) for arbitrary p < 1.
However, we can numerically solve for . = 0,4 and eval-
uate /1, (w) for specific values of w, as shown in Fig. 1. We
show in the next section that analytical expressions for the
proximal mapping, specified by (23), can be derived even
if analytical expressions for n are not available.

We plot /i, i), and 2P /p for p = 1 and p = 0.5 for different
values of 31 in Fig. 1. Note that p,(z) = |z|, V1, whenp = 1.
However, p,(z) is different from |z|?/p when p < 1. This
implies that the VS interpretation of the MM algorithm breaks
down when p < 1, as explained in Section IV.

D. Expression for 0

The Huber approximation of the TV norm (p; = 1) was
considered in [30], where they showed that

q
Ylil? VB 3D
=1

Analytical expressions of  cannot be obtained when py < 1.
However, we derive the analytical expression for the shrinkage
in Section IV, which will enable the efficient implementation.

IV. NUMERICAL ALGORITHM

We now focus on the numerical implementation of the three
main subproblems. Specifically, we show that all of the three
steps can be solved either analytically or using efficient algo-
rithms for most penalties and measurement operators of prac-
tical interest. This enables us to realize a computationally ef-
ficient algorithm. We also introduce a continuation scheme to
accelerate the convergence of the algorithm.

A. Quadratic Subproblem Specified by (22)

Since subproblem (22) is entirely quadratic, we rewrite it as
a Tikhonov regularized image recovery problem, i.e.,

) A p
Vo1 = argmin || A(Y) - ylI*+ 55

Aafa
2 2900~ anill. 32

ly = wall?

+

Here, 4 < T and q¢; < Q; are the 3-D data sets corre-
sponding to the corresponding Casorati matrices. Similarly, G;
is the linear operator such that G;(y) < R;I'C,. We obtain the
Euler-Lagrange equation of this variational problem as

q
(A*.A + MBI+ Aoy g:gv‘) Yot
i=1

q
=A%y + M1 Wy + X232 Z GidQni- (33)

i=1
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Here, 7 is the identity operator. Note that the variables in the
right-hand side of (33) are fixed. Thus, this step involves the
solution to a linear system of equations. In the general setting,
this system of equations can be efficiently solved using iterative
algorithms such as the CG. A few CG steps are often sufficient
for good convergence since the algorithm is initialized by the
previous iterate v,,. We now show that analytical solutions of
(32) do exist for many measurement operators. When the TV
penalty is used, the aforementioned equation can be rewritten
as

(A" A+ BL T+ A2f2 DAYy = ATy + 101 Wi+ A2 f2 P
(34
Here, A%,, 4 is the 3-D Laplacian of 4,1, and p, = V- q,

is the divergence of the vector field q,,.
 Fourier sampling: An analytical expression can be derived
for (32), when the measurements are Fourier samples of 7y
on a Cartesian grid. Specifically, we assume that the index
set corresponding to the measured samples to be indicated
by A and the corresponding measurements to be b;; i.e.,
(b; = Y(w;), where 7 is the discrete Fourier transform of
v). We split the frequency samples, specified by w, into two
sets A and A¢ and evaluate the discrete Fourier transform

of both sides of (34) to obtain

bi+A181 Wn (wi)+X202 Pn(wi) 1 .

Ynt1(wi) = TP A Fallw? 0 Wi €A (35)
Y1 (Wi A1B1 W (Wi)+XA282 P (w;) else
A1 8142 Bz ||wi||? ’ ’

Here, p, = V - qn.

* Deconvolution: Convolution can be posed as a multiplica-
tion in the Fourier domain. Considering the Fourier trans-
form of the matrix, (34) can be solved in the Fourier do-
main as

H(w)*b(w) + M\ S (W) + Xa2fa ()
N 2
@) + X181+ Aoballw]?

ny1(w) = . (36)

Here, H(w) is the transfer function of the blurring filter,
w is the frequency, b(w) is the Fourier transform of the
measured blurred image data set, and p,, (w) is the Fourier

transform of V - q,,.

B. Subproblem 2 Specified by (23)

We will now focus on (23) and derive the analytical expres-
sion for W,,;1, i.e.,

ST Wl
Wop1 = argmin BT |?/2 + BIWI3/2 = A(Tni1, W)
+ (W)
= argmax B(Tos1, W) = 0 (IW][3/2+1(W)/5)
F(W)

(37

The minimizer of this expression satisfies

rn—i—l = /8 Vf(wn+l) (38)

We used the differentiability of ¢, and hence f to obtain the
aforementioned expression. This is valid for the Huber approxi-
mations of the spectral penalties. Since f and g are convex con-
jugates, V f and Vg are inverse functions [19], [31]. Thus, we
obtain the optimal W that solves (37) as

W1 =V (Tht1) =Vg(Tayr)
= r‘nJrl - a§b<r‘n+1)/ﬁ

We used relation g(T') = ||T||%/2 — ¢(T")/3 in the second
step. Thus, analytical expressions for n are not required to de-
rive the shrinkage step, due to the property of convex conjugate
functions. We now derive the shrinkage steps for specific spec-
tral penalties.

* Special case: Nuclear norm, i.e.,

. . 1
9 _ Jsign(z), iffz] > 5
Ho () {ﬂla,y else. '

(39)

(40)

We assume ' = Zf;”ll(m") o;u; v to be the singular-
value decomposition of I'. Substituting in (39), we get

min(m,n)

W= " (oi—1/B)1wv]

=1

(41)

where u;, v;, and o; are the singular vectors and values of
* Schatten-p norms: Following the same steps, we obtain the
shrinkage step for Schatten-p norms as

min(m,n)

> (C’i - U§P1—1)/ﬁl>+ u; v

i=1

W* =0¢g(T) = (42)

C. Solving Subproblem 3 Specified by (24)

Problems similar to (24) have been addressed in the context of
iterative algorithms for TV minimization [30] and its nonconvex
variants [24]. The generalized shrinkage rule to derive Q;;7 =
1,...,q is specified by

(P —P®=1)/3,)

Qint1 = P R,I'C;

(43)

where P = /37 |R,[,+1C;|2. P? is the matrix whose
elements are the pth power of the entries of P.

D. Continuation to Improve the Convergence

The three-step alternating minimization algorithm involves a
tradeoff between convergence and accuracy. Specifically, when
(1 = B2 = 0, (21) simplifies to three decoupled problems in T,
W, and {Q;,i = 1,...,q}. Since all of these problems have
analytical solutions, the entire algorithm converges in a single
step to the minimum norm solution, which is a poor approxi-
mation of (13); this is expected since the corresponding Huber
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Fig.2. Effect of 3, on convergence and accuracy. We demonstrate the approx-
imation of || by the corresponding Huber penalty. Note that, for 3 = 0.1, the
majorizing function approximates the Huber function well, resulting in fast con-
vergence to the minimum of the corresponding penalty. However, in this case,
the approximation of |x| by the Huber function is poor, resulting in poor accu-
racy. In contrast, the approximation of |x| by the Huber function is good when
3 = 5. In this case, the majorizing function of the Huber function is a poor
approximation. Specifically, it is too narrow, resulting in slow convergence. (a)
B =0.1.(b) 3 =5.

function is a poor approximation to the original cost function.
In contrast, the approximation is exact when 31 = (2 = oc.
However, it is easy to see that the algorithm fails to converge in
this case.

The aforementioned tradeoff between convergence and ac-
curacy can be understood in terms of the ability of the Huber
function to approximate the original penalty and the proximity
of the majorizing function to the Huber approximation. We il-
lustrate this issue in Fig. 2 in the context of the nuclear-norm
penalty. Note that, for small values of (3, the Huber approxima-
tion 114 (o) of |o| is poor. However, the corresponding quadratic
majorizing function 3(z — w)* + u, (o) closely approximates
4. Hence, the MM scheme converges fast to the minimum of
the approximate penalty. In contrast, when § — oo, the Huber
function approximates the spectral penalty well, resulting in the
good accuracy of the final solution. However, the convergence
is poor in this case since the approximation of the Huber func-
tion by the majorizing quadratic function is poor.

To overcome the aforementioned tradeoff, we introduce a
continuation scheme. Specifically, we initialize 3; and 35 with
small values and progressively increase them until convergence.
The algorithm converges very fast for small values of 3; and 2,
as discussed before. We use the solution at each step to initialize
the next step. For each choice of continuation parameters, we it-
erate the algorithm to convergence (i.e., until the relative change
in the cost function in (13) is less than a prespecified threshold).
In all the experiments considered in this paper, we initialize the
continuation parameters as J; = o = 5 and increase them by
a factor of five for each iteration of the outer loop.

E. Interpretation as a VS Scheme

The MM scheme to solve for the spectrally regularized matrix
recovery may be interpreted as a VS strategy [6], similar to such
schemes in compressed sensing [32], [33], i.e.,

I” = argmin | A(T) ~ bl + A (W) st.T =W. (44)

Here, W is an auxiliary variable, and the aforementioned
constrained optimization problem is equivalent to (13), when
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Ao = 0. VS algorithms convert the aforementioned constrained
optimization problem to an unconstrained problem by intro-
ducing an additional quadratic penalty, i.e.,

(0, W)* = arg uin [A) ~ b+, 6(W)+0, 2 [P W3.
’ (45)

This unconstrained problem is equivalent to (44), when 3; —
oo. Note that (45) is very similar to (21) with Ay = 0, except
that ¢ is used instead of 7. The VS and MM schemes are exactly
the same for p = 1, since n(W) = ||W]||., VB:1. However,
n(W) # |[W]Z when p < 1 (see Fig. 1). Hence, the two
schemes are not equivalent for general Schatten-p norms.

The standard practice in VS compressed sensing schemes is
to alternatively minimize the criterion with respect to each of
the unknowns, assuming the other variable to be fixed [32], [33].
Thus, we obtain W11 as

. B
Wi = argmin D00 - WG+ (W) @6)
When ¢(I') = ||T'||« [1], this proximal mapping can be

efficiently implemented using singular-value soft thresholding.
However, analytical closed-form expressions for the afore-
mentioned proximal mapping do not exist when nonconvex
spectral penalties (e.g., Schatten-p norms; ¢(I') = [|T'||D) are
used. Iterative algorithms may be used to solve this proximal
mapping. However, it will be computationally more expen-
sive since it involves an additional inner loop. Ehler recently
demonstrated that approximating the proximal mapping of
nonconvex £, penalties with hard-thresholding shrinkage rules
will provide computationally efficient solutions [20]. Adapting
these approximate rules to nonconvex matrix penalties, we get

min(m,n)
Woii= Y x(e)w vl (47)
i=1
The thresholding function in (47) is defined as
2% s 20
x(o) =477 Tat 10> (48)
0, else.

where ¢, = 2772((2—p)??/(1—p)} " ?) and u;, v;, and o; are
the singular vectors and values of I';, 1, respectively. A similar
approximate rule can be used for the nonconvex TV penalty.
In contrast with these approximate rules, analytical shrinkage
formulas can be derived for most spectral penalties 7(I") in the
MM framework [see (39)]. We compare the MM algorithm and
the VS scheme with the approximate shrinkage rule in the re-
sults section; we observe that the proposed MM scheme pro-
vides faster convergence, due to the exact shrinkage rule.

The MM scheme in the nonconvex (p1 < 1;p2 < 1) case
may be alternatively interpreted as an approximate VS algo-
rithm, where (42) and (43) are used to approximate the corre-
sponding proximal mappings. Note that these approximations
are not reported before and is only inspired by the MM frame-
work. The aforementioned approximate VS scheme (with ap-
proximate MM-inspired proximal mappings) can be further ac-
celerated using augmented-Lagrangian (AL) or split-Bregman



HU et al.: FAST MAJORIZE-MINIMIZE ALGORITHM FOR THE RECOVERY OF SPARSE AND LOW-RANK MATRICES 749

(SB) methods [34], [35], as shown in [36]. Unlike the conven-
tional AL or SB method (originally developed for convex penal-
ties), the proposed nonconvex schemes still require continuation
since the approximation is only exact as § — oo (see Fig. 1.)

V. RESULTS

We will demonstrate the utility of the combined nonconvex
penalty in reliably recovering sparse and low-rank matrices in
Section V-A. The convergence of the algorithm and the utility
of continuation will be studied in Section V-B. In Section V-C,
we demonstrate the utility of the combined nonconvex penalty
in recovering dynamic contrast-enhanced (DCE) magnetic res-
onance (MR) images from their undersampled Fourier measure-
ments. The dynamic MR imaging (MRI) data set is only approx-
imately of low rank and sparse.

A. Recovery of Low-Rank and Sparse Matrices

We first demonstrate the benefits in using the combination
of two nonconvex penalties, as compared with widely used nu-
clear-norm scheme. We consider the recovery of the MIT logo
from its sparse measurements to illustrate the algorithm. This
image matrix (size of 46 x 81 with 3726 pixels) is ideal for our
study since it is of low rank (rank = 5) and also has sparse
gradients. Note that the signal is naturally a matrix, and hence,
we do not use Casorati matrix formulation as in (11). We use
random measurement matrices and vary the number of measure-
ments M from 100 to 1500 as in [1]. The matrix was then re-
covered from these measurements using (13) with six different
parameter settings:

1 nuclear-norm penalty alone (p; = 1; A2 = 0);
nonconvex spectral penalty alone (p1 = 0.5; Ay = 0);
standard TV penalty alone (A; = 0;p2 = 1);
nonconvex gradient penalty alone (A; = 0; po = 0.5);
combination of both convex penalties (p; = p2 = 1
combination of both nonconvex penalties (p; =
0.5).

We repeat each experiment for ten different random measure-
ment ensembles and evaluate the average signal-to-noise ratio
(SNR), specified as

AN B W

);
P2 =

(49)

SNR = 20log (M> .

”Frec - ForigHF

For each setting, we optimize the regularization parameters
(A1 and As) with respect to SNR. Fig. 3 shows the SNR of the
recovered image as a function of the number of measurements.
It is shown that the SNR abruptly rises when the number of
measurements exceeds a specified threshold. An SNR of 80 dB
corresponds to almost perfect reconstruction.

‘We observe that the algorithm with the conventional nuclear-
norm scheme can perfectly recover the image if the number of
measurements is greater than 1300; these findings are consis-
tent with the results in [1]. In contrast, the nonconvex spectral
penalty alone requires only 900 measurements. Similarly, the
algorithm with the nonconvex TV penalty alone requires only
400 measurements to perfectly recover the image, as compared
with 800 with standard TV. These results demonstrate the ben-
efit in using nonconvex penalties over convex schemes. We did

140 —T T —T— T T
80} .
o
zZ :
n l
1 H
—0=Nuclear Norm(p‘=1)
—o—N-C Spectral (p,=0.5)
20r ‘ | —e=TV(p,=1)
=t N-C Spectral (p2=0.5)
O 7| ——- Convex(p'=p2=1)
=g N—-C Convex (p‘=p‘=0,5)

700800 900
# measurements

100 200 400500 1300 1500

Fig. 3. Utility of the combination of nonconvex penalties. We plot the SNR as
a function of the number of measurements on the MIT logo, recovered using
the six algorithms. Note that the SNR abruptly increases when the number of
measurements exceeds a specified threshold. It is seen that the algorithms using
the (red solid curve) nonconvex spectral and (blue solid curve) nonconvex TV
penalties alone reduce the number of measurements required to recover the
image considerably over (blue dotted and black dotted curves, respectively) their
convex counterparts. We also observe that the combination of the (red dotted)
convex and (black solid) nonconvex penalties work much better than the indi-
vidual penalties.

not encounter any local-minimum issues. We believe that the
continuation strategy, where the cost function is initialized as a
quadratic criterion and gradually made nonconvex, minimizes
the local-minimum problems.

It is seen that the combined convex penalty (TV and nuclear
norm) requires approximately 700 measurements, as compared
with 1300 with the nuclear norm alone and 800 with TV alone.
Similarly, the combination of the nonconvex penalties requires
only 200 measurements, as compared with 900 with nonconvex
spectral penalty alone and 400 with nonconvex gradient penalty
alone. These experiments demonstrate a significant reduction
in the number of measurements required to recover a matrix
when sparsity and spectral penalties are combined. As described
earlier, sparsity and low-rank properties are complementary;
since the degrees of freedom of matrices that are simultaneously
sparse and of low rank are small, the joint penalty is capable
of significantly reducing the number of measurements. Sample
images of recovered matrices for four different number of mea-
surements are shown in Fig. 4.

B. Convergence of the Algorithm

We now study the effect of parameters 3; and (2 on the
convergence of the algorithm and the accuracy of the solution.
We consider the recovery of the MIT logo from M = 1000
measurements using the combined nonconvex penalties (p; =
p2 = 0.5). We plot the evolution of the original cost func-
tion in (13) and the SNR with respect to the number of itera-
tions in Fig. 5(a) and (b), respectively. It is observed that lower
values of 31 and (5 result in fast convergence but yield solutions
with higher cost and lower SNR. This is expected since (21) is
a poor approximation to (13). In contrast, higher values of [3;
and (3 approximate the original cost function well but result
in slow convergence. We observe that the proposed continua-
tion scheme, where 31 and (32 are initialized with small values
and are gradually increased, offers the best compromise. In this
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Fig. 4. Sample recovered images for four different number of measurements
using nonconvex spectral penalty (p; = 0.5), standard TV (p> = 1), com-
bination of convex penalties (p; = p» = 1), and combination of nonconvex
penalties (p1 = p> = 0.5). The rows correspond to different number of mea-
surements. The results show that almost perfect reconstruction can be obtained
when the number of measurements is larger than 200 by using the combination
of both nonconvex penalties (p; = p> = 0.5). Note that this is six times lower
than using only the nuclear-norm penalty (1300 measurements) and four times

lower than standard TV (800 measurements). Similarly, we obtain a fourfold
improvement over nonconvex spectral penalty alone.

p2=1

800

900

specific example, the continuation scheme converged in 599 it-
erations. In contrast, the schemes with fixed values of 3; and
(2 require far more number of iterations. The images recovered
after 500 iterations using different parameter choices are shown
in Fig. 6. We study the effect of different continuation schemes
with different convergence rates in Fig. 7. We use fixed incre-
menting strategies in the first three experiments, where (31 and
(o are incremented by a fixed (... We also tried several dy-
namic scheduling schemes. The fourth experiment shows the
one with comparative best results, where [, is increased at
each outer iteration, e.g., first iteration, 3, = 10; second iter-
ation, Bin. = 20. ... The plots show that the different schemes
converge to the same solution, but the convergence rates are de-
pendent on the specific continuation strategy. Note that the con-
vergence rate of the algorithms do not significantly vary with
the specific continuation strategy, indicating that the algorithm
is not too sensitive to Sipc.

We compare the proposed MM algorithm with the approxi-
mate VS scheme in the context of the spectrally regularized non-
convex criterion in Fig. 8; we set Ay = 0. The VS scheme relies
on the approximate shrinkage rule, specified by (47). We com-
pare the algorithms for p; = 0.3 and p; = 0.5, respectively.
We consider M = 1500 measurements in Fig. 8(a), whereas
M = 1000 measurements are studied in Fig. 8(b). It is observed
that the MM scheme (blue and black curves) significantly out-
performs the approximate VS scheme (red and magenta curves),
particularly when p; and M are small. This experiments clearly
demonstrate the utility of the MM scheme for nonconvex penal-
ties. As discussed earlier, both the algorithms are essentially the
same when p = 1.
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Fig. 5. Utility of the continuation scheme. We plot the cost and the SNR as a
function of the number of iterations. We observe that lower values of the pa-
rameters (31 = B2 = 5) result in a very fast convergence but yield a solution
with higher cost and lower SNR. Higher values of the parameters improve the
accuracy at the expense of the number of iterations. Note that the continuation
strategy, where the parameters are initialized with 3; = 3> = 5 and increased
by a factor of 5 within the outer loop, results in fast convergence and solutions
with good SNR. We terminate the algorithm when the cost does not change,
where the convergence is achieved with 3; = B> = 5e7. We observe that
the algorithm fails to converge if it is initialized with these parameters. (a) Cost
function to iterations. (b) SNR to iterations.

Fig. 6. Utility of continuation schemes in matrix recovery. We reconstruct the
MIT logo with continuation and different fixed values of 3. We show the re-
constructions using (a) continuation scheme (initialized with 3; = 3> = 5
and gradually increased by a factor of 5) SNR = 100.64; (b) 31 = 52 = 5,
SNR = 22.41;(c) 1 = B> = 50, SNR = 12.14; and (d) 3, = 3> = 150,
SNR = 5.98 after 500 iterations. Note that the continuation scheme provides
almost perfect recovery, whereas the other methods result in artifacts.
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Fig. 7. Comparison of continuation strategies. We consider four schemes,
which start with the same initial value of 3; and 3., but increase them by
different factors (inc). In the first three schemes, fin. values are fixed. In the
fourth scheme (dynamic continuation), we increase Jin. at each outer iteration.
We observe that the final result the algorithms converge to are the same. In
addition, the convergence rate of the different continuation strategies does not
significantly vary; this indicates that the algorithm does not require significant
tuning of the continuation strategy. (a) M = 1000. (b) M = 500.

C. Accelerating Dynamic Contrast-Enhanced MRI

Here, we illustrate the utility of the proposed algorithm in
accelerating DCE MRI. DCE MRI tracks the dynamic varia-
tions in the image intensity, resulting from the passage of a
tracer bolus. Specifically, the paramagnetic tracer within the
vasculature results in spin dephasing, hence resulting in de-
creased signal intensity. DCE MRI has shown great potential
in diagnosing malignant lesions in the brain, breast, and other
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Fig. 8. Comparison of approximate VS and MM algorithms for the recovery
of the MIT logo from different number of measurements, indicated by M. As
discussed in the text, both algorithms are the same when p = 1. Note that the
convergence rate of (black and blue curves) the MM scheme is considerably
faster than (magenta and red curves) the approximate VS method that relies on
the Ehler approximation, particularly for lower values of p. The differences be-
tween the two methods are larger when the number of measurements are smaller.
(a) M = 1500. (b) M = 1000.

organs. High temporal resolution is required to accurately es-
timate the kinetic parameters, whereas high spatial resolution
is required to visualize the lesion morphology. In addition, ac-
celerated imaging can enable the simultaneous acquisition of
two echoes (T1 weighted and T2* weighted), thus enabling the
accurate quantification of microvascular density and vascular
permeability; these parameters are highly correlated with ma-
lignancy and have been suggested as surrogate markers for an-
giogenesis. Several acceleration schemes have been proposed
to accelerate DCE MRI [37], [38]. The accelerations offered by
these schemes are modest (two- to threefold), leaving room for
further improvement.

We demonstrate the utility of the proposed nonconvex scheme
in significantly accelerating DCE MRI. The dynamic MRI mea-
surements correspond to the samples of the signal in the Fourier
(k — t) space, corrupted by noise, i.e.,

b; = /fy(x,ti) exp (—jk?x) dx+n; i=1,...,s.

X

Here, (k;, t;) indicates the ith sampling location. We denote
the set of sampling locations as E = {(k;,t;),7 = 1,...,s}.
The fully sampled 3-D data set of a single slice is shown in
Fig. 10(a); the data corresponds to 60 time points, separated
by TR = 2 sec; the matrix size is 128 x 128 x 60. We retro-
spectively resample each slice of the data in the Fourier domain
using a uniform radial trajectory. The trajectory is rotated by a
random angle for each frame to obtain an incoherent pattern [see
Fig. 10(b)]. The number of lines per slice is chosen depending
on the specified acceleration. For example, 20 k-space lines ap-
proximately correspond to the acceleration factor of A = 7.
We recover the dynamic imaging data set from its undersam-
pled Fourier measurements using the proposed scheme. We use
a few steps of the CG algorithm to solve for (22) at each itera-
tion since the samples are not on the 3-D Cartesian grid. We use
the previous iterate as an initial guess; thus, the CG algorithm
converges to the solution of (22) in a few steps. The recovery of
the DCE MRI data set using the MATLAB implementation of
the proposed algorithm takes approximately 8 min on an Intel
quad core processor with an NVDIA Tesla graphical processing
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Fig. 9. SNR of the dynamic MRI data set as a function to the acceleration
factor. We reconstruct the data set from its Fourier samples using six methods,
i.e., nuclear norm (p; = 1), nonconvex spectral penalty (p1 = 0.3), TV (p2 =
1), nonconvex gradient penalty (p> = 0.5), combined convex penalties (p1 =
p2 = 1), and combined nonconvex penalties (p1 = p2 = 0.5). Note that the
combined nonconvex penalty provides significant gains in the SNR at almost all
acceleration factors.

unit. The computationally expensive components of the algo-
rithm are implemented using Jacket [39].

The proposed algorithm has two regularization parameters \;
and Ao that control the quality of the reconstructions. The spe-
cific choice of the continuation parameters only influences the
speed of convergence and will not determine the quality of the
final solution, as shown in Fig. 7. Since the speed of convergence
is not too sensitive to the specific continuation scheme, we do
not expect to significantly improve the algorithm by dynami-
cally updating the continuation parameters. Since the fully sam-
pled data set is available in this experiment, we choose the reg-
ularization parameters that minimize the reconstruction error.
Extensive literature is available on efficient schemes to choose
the regularization parameters, when the ground truth is not avail-
able [40]-[42]; we plan to adapt these methods to determine the
optimal regularization parameters in the future.

The SNR of the recovered 3-D data set as a function of the
acceleration is plotted in Fig. 9. We observe that the best SNR
is obtained when both the nonconvex penalties are used, which
is around 1.5 dB better than nuclear norm alone and 6 dB su-
perior than TV alone. It is also shown that the combined non-
convex penalty (solid black curve) gives reconstructions that
are approximately 1-2 dB better than its convex counterpart
(dotted red curve), particularly at higher accelerations. These
experiments demonstrate the utility of the combination of non-
convex penalties in challenging practical applications. We show
the slice corresponding to the peak of the perfusion contrast,
recovered using TV, nuclear-norm, and combined nonconvex
penalties, in Fig. 10(c)—(e). The corresponding error images are
shown in Fig. 10(f)—(h), respectively. Here, we consider A =
7, which corresponds to 20 k-space lines per frame. We plot
the average intensity variations of the recovered images from
5 pixels in the tumor region (green dot) and 5 pixels of the
healthy tissue (red dot) in Fig. 10(i)—(k), respectively. Note that
the curve from the tumor region has a larger dip and a larger
width compared with that of the healthy tissue. This is due to
the higher microvessel density and the increased tortuosity of
the vessels in the tumor regions. We observe that the combi-
nation of nonconvex penalties gives good fit to the measured
data. The sevenfold acceleration without significant degradation
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Fig. 10. Reconstruction of dynamic MRI data from undersampled Fourier sam-
ples. We consider 20 radial lines per image, which corresponds to an accelera-
tion factor of A = 7. The images corresponding to (dotted line in the bottom
row) the peak of the bolus, which are recovered using TV (p> = 1), nuclear
norm (p; = 1), and the combination of nonconvex penalties (p; = p» = 0.5),
are shown in (c)—(e). The corresponding error images are shown in (f)—(h), re-
spectively. [(e), (h), and (k)] Reconstructions using the proposed combination of
nonconvex penalties. The SNRs of the reconstructions using TV, nuclear norm,
and the combination of nonconvex penalties are 23.81, 26.77, and 27.92 dB, re-
spectively. Note that the proposed scheme provides a 1- to 4-dB improvement
in performance and considerably better image quality compared with the clas-
sical schemes. (a) Actual. (b) Radial trajectory. (c) TV. (d) Nuclear norm. (e)
Combination. (f) TV. (g) Nuclear norm. (h) Combination. (i) TV. (j) Nuclear
norm. (k) Combination.

in the image quality is quite remarkable, particularly since we
are only assuming a single channel acquisition; we expect to fur-
ther improve the signal quality and/or acceleration using 12- or
32-channel head arrays that are now available.

VI. CONCLUSION

We have introduced a novel MM algorithm to recover sparse
and low-rank matrices from its noisy and undersampled mea-
surements. We have majorized the nonconvex spectral and spar-
sity penalties in the cost function using quadratic matrix func-
tions, resulting in an iterative three-step alternating minimiza-
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tion scheme. Since each of the steps in the algorithm has com-
putationally efficient implementations, the algorithm provides
fast convergence. We have verified the utility of the combination
of nonconvex spectral and sparsity penalties to significantly re-
duce the number of measurements required for perfect recovery
in dynamic MRI data, as compared with current matrix recovery
schemes.

APPENDIX 1

Here, we derive the conjugate of function p,, specified by
(29). Specifically, p is defined as

() = max (wz — p1y())

= Inax max wr,

, max
z;x<% L

<wx - l(:17 — 1/6)2>
xrT> K 2

The maximum value of the first term (wx; x < 1/) is given
by w/[3. The second term inside the bracket is true if z = w +
1/, when the value of the function is given by w?/2 + w/f3.
Since the second term is always greater than the first, we obtain

U)2 w

pg(w) = o> T Ik

Since p,(w) = B(pg(w) — w?/2), we have g, (w) = w.

(50)

REFERENCES

[1] E. J. Candes and B. Recht, “Exact matrix completion via convex op-
timization,” Found. Comput. Math., vol. 9, no. 6, pp. 717-772, Dec.
2009.

[2] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization,” SIAM
Rev., vol. 52, no. 3, pp. 471-501, Aug. 2010.

[3] Z.Liang, “Spatiotemporal imaging with partially separable functions,”
in Proc. ISBI, 2007, pp. 181-182.

[4] C.Brinegar, Y. Wu, L. Foley, T. Hitchens, Q. Ye, C. Ho, and Z. Liang,
“Real-time cardiac MRI without triggering, gating, or breath holding,”
in Proc. IEEE EMBC, 2008, pp. 3381-3384.

[5]1 S.Goud, Y. Hu, E. Di Bella, and M. Jacob, “Accelerated dynamic MRI
exploiting sparsity and low-rank structure: kt SLR,” IEEE Trans. Med.
Imag., vol. 30, no. 5, pp. 1042-1054, May 2011.

[6] S.Goud, Y. Hu, and M. Jacob, “Real-time cardiac MRI using low-rank
and sparsity penalties,” in Proc. ISBI, 2010, pp. 988-991.

[7]1 H.Pedersen, S. Kozerke, S. Ringgaard, K. Nehrke, and W. Y. Kim, “k-t
PCA: Temporally constrained k-t blast reconstruction using principal
component analysis,” Magn. Reson. Med., vol. 62, no. 3, pp. 706716,
Sep. 2009.

[8] M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing
MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72-82, Mar. 2008.

[9] E. Candes, X. Li, Y. Ma, and J. Wright, Robust principal component
analysis Stanford Univ., Stanford, CA, Tech. Rep. 2009-13, 2009.

[10] B. Zhao, J. Haldar, and Z. Liang, “Psf model-based reconstruction
with sparsity constraint: Algorithm and application to real-time car-
diac mri,” in Proc. IEEE EMBC, 2010, pp. 3390-3393.

[11] B.Zhao, J. Haldar, A. Christodoulou, and Z. Liang, “Further develop-
ment of image reconstruction with joint partial separability and sparsity
constraints,” in Proc. IEEE ISBI, 2011, pp. 1593-1596.

[12] J. Trzasko and A. Manduca, “Relaxed conditions for sparse signal re-
covery with general concave priors,” IEEE Trans. Signal Process., vol.
57, no. 11, pp. 4347-4354, Nov. 2009.

[13] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex
minimization,” IEEE Signal Process. Lett., vol. 14, no. 10, pp.
707-710, Oct. 2007.

[14] D. Wipf and S. Nagarajan, “Iterative reweighted 11 and 12 methods for
finding sparse solutions,” IEEE J. Sel. Topics Signal Process., vol. 4,
no. 2, pp. 317-329, Apr. 2010.



HU et al.:

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

FAST MAJORIZE-MINIMIZE ALGORITHM FOR THE RECOVERY OF SPARSE AND LOW-RANK MATRICES 753

J. Cai, E. Candes, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4, pp.
1956-1982, Jan. 2010.

S. Ma, D. Goldfarb, and L. Chen, “Fixed point and Bregman iterative
methods for matrix rank minimization,” Math. Programm., vol. 128,
no. 1/2, pp. 321-353, Jun. 2011.

K. Toh and S. Yun, “An accelerated proximal gradient method for nu-
clear norm regularized least squares,” , 2009, to be published.

J. Huang, S. Zhang, and D. Metaxas, “Efficient MR image recon-
struction for compressed MR imaging,” in Proc. MICCAI, 2010, pp.
135-142.

R. T. Rockafellar and R.-B. Wets, Variational Analysis. New York:
Springer-Verlag, 2004.

M. Ehler and S. Geisel, “Arbitrary shrinkage rules for approximation
schemes with sparsity constraints,” in Proc. Schloss Dagstuhl Semin.
—Structured Decompositions Efficient Algorithms, Wadern, Germany,
2009, no. 08492.

J. Trzasko and A. Manduca, “Highly undersampled magnetic reso-
nance image reconstruction via homotopic ello-minimization,” IEEE
Trans. Med. Imag., vol. 28, no. 1, pp. 106-121, Jan. 2009.

A. S. Lewis, “The convex analysis of unitarily invariant matrix func-
tions,” J. Convex Anal., vol. 2, no. 1/2, pp. 173—183, 1995.

J. Haldar and D. Hernando, “Rank-constrained solutions to linear ma-
trix equations using power factorization,” IEEE Signal Process. Lett.,
vol. 16, no. 7, pp. 584-587, Jul. 2009.

R. Chatrand, “Fast algorithms for nonconvex compressive sensing:
MRI reconstruction from very few data,” in Proc. ISBI, 2009, pp.
262-265.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenom., vol. 60, no.
1-4, pp. 259-268, Nov. 1992.

H. Gao, J.-F. Cai, Z. Shen, and H. Zhao, “Robust principal component
analysis based four-dimensional computed tomography,” Phys. Med.
Biol., vol. 56, no. 11, pp. 3181-3198, Jun. 2011.

H. Jung, J. Park, J. Yoo, and J. C. Ye, “Radial k-t focus for high-resolu-
tion cardiac cine MRI,” Magn. Reson. Med., vol. 63, no. 1, pp. 6878,
Jan. 2010.

M. Lustig, J. Santos, D. Donoho, and J. Pauly, “kt SPARSE: High frame
rate dynamic MRI exploiting spatio-temporal sparsity,” in Proc. 13th
Annu. Meeting ISMRM, Seattle, WA, 2006, p. 2420.

U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dy-
namic MRL” Magn. Reson. Med., vol. 59, no. 2, pp. 365-373, Feb.
2008.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating mini-
mization algorithm for total variation image reconstruction,” SIAM J.
Imag. Sci., vol. 1, no. 3, pp. 248-272, Jul. 2008.

Legendre Transformation [Online]. Available: http://en.wikipedia.org/
wiki/Legendre_transformation

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented
Lagrangian approach to the constrained optimization formulation of
imaging inverse problems,” IEEE Trans. Image Process., vol. 20, no.
3, pp. 681-695, Mar. 2011.

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast image recovery
using variable splitting and constrained optimization,” /EEE Trans.
Image Process., vol. 19, no. 9, pp. 2345-2356, Sep. 2010.

E. Esser, Applications of Lagrangian-based alternating direction
methods and connections to split Bregman UCLA, Los Angeles, CA,
CAM Rep. TR09-31, 2009.

T. Goldstein and S. Osher, The split Bregman algorithm for 11 regu-
larized problems UCLA, Los Angeles, CA, UCLA CAM Rep. 08-29,
2008.

S. Goud, Y. Hu, E. DiBella, and M. Jacob, “Accelerated first pass car-
diac perfusion mri using improved k-t SLR,” in Proc. ISBI, 2011, pp.
1280-1283.

B. Madore, “Using UNFOLD to remove artifacts in parallel imaging
and in partial-Fourier imaging,” Magn. Reson. Med., vol. 48, no. 3, pp.
493-501, Sep. 2002.

[38] M. Han, B. L. Daniel, and B. A. Hargreaves, “Accelerated bilateral dy-
namic contrast-enhanced 3-D spiral breast MRI using tsense,” J. Magn.
Reson. Imag., vol. 28, no. 6, pp. 1425-1434, Dec. 2008.

[39] Jacket: Accelerating Matlab Using GPU [Online]. Available: http://
www.accelereyes.com/products/jacket

[40] S.Ramani, T. Blu, and M. Unser, “Monte-Carlo Sure: A black-box op-
timization of regularization parameters,” IEEE Trans. Image Process.,
vol. 17, no. 9, pp. 1540-1554, Sep. 2008.

[41] P. Hansen and D. OLeary, “The use of the l-curve in the regularization
of discrete ill-posed problems,” SIAM J. Sci. Comput., vol. 14, p. 1487,
1993.

[42] O. Scherzer, “The use of Morozov’s discrepancy principle for
Tikhonov regularization for solving nonlinear ill-posed problems,”
Computing, vol. 51, no. 1, pp. 45-60, Mar. 1993.

Yue Hu (S’11) received the B.S. degree in 2008
from Harbin Institute of Technology, Harbin, China,
and the ML.S. degree in 2011 from the University of
Rochester, Rochester, NY, where she is currently
working toward the Ph.D. degree in the Department
of Electrical and Computer Engineering.

Her research interests include compressed sensing,
image reconstruction with application in magnetic
resonance imaging.

Sajan Goud Lingala (S’10) received the B.S.
degree from Osmania University, Hyderabad, India,
and the M.Tech. degree from the Indian Institute
of Technology (IIT) Bombay, Mumbai, India, both
in biomedical engineering (BME). He is currently
working toward the Ph.D. degree in BME at the
University of Iowa, Iowa City.

His research interests include multidimensional
magnetic resonance image acquisition and recon-
struction with focus on cardiac imaging.

Mr. Lingala is the recipient of the Best Undergrad-
uate Thesis Award during his bachelors and the Nitish Thakor Award for excel-
lence in M.Tech BME, IIT Bombay.

Mathews Jacob (M’ 11) received the B.Tech. in elec-
tronics and communication engineering from the Na-
tional Institute of Technology, Calicut, India, in 1996,
the M.E. degree in signal processing from the Indian
Institute of Science, Bangalore, India, in 1999, and
the Ph.D. degree from the Swiss Federal Institute of
Technology, Zurich, Switzerland, in 2003.

Between 2003 and 2006, he was a Beckman
Postdoctoral Fellow with the University of Illinois
at Urbana Champaign, Urbana. He is an Assistant
Professor with the Department of Electrical and
Computer Engineering, University of Iowa, Iowa City, IA. His research interests
include image reconstruction, image analysis and quantification in the context
of a range of modalities including magnetic resonance imaging, near-infrared
spectroscopic imaging, and electron microscopy.

Dr. Jacob is currently the Associate Editor of the IEEE TRANSACTIONS ON
MEDICAL IMAGING. He is the recipient of the CAREER award from the National
Science Foundation in 2009 and the Research Scholar Grant from the American
Cancer Society in 2011.



