
Open-Source Manually Annotated Vocal Tract Database for 
Automatic Segmentation from 3D MRI Using Deep Learning: 
Benchmarking 2D and 3D Convolutional and Transformer 
Networks

*Subin Erattakulangara, *Karthika Kelat, †Katie Burnham, †Rachel Balbi, *Sarah E. Gerard, †,‡,§David Meyer, and  
*,¶Sajan Goud Lingala, ⁎‡§¶Iowa City, Iowa and †Winchester, Virginia 

Summary: Objectives. Accurate segmentation of the vocal tract from MRI data is essential for various voice, 
speech, and singing applications. Manual segmentation is time-intensive and susceptible to errors. This study 
aimed to evaluate the efficacy of deep learning algorithms for automatic vocal tract segmentation from 
3D MRI. 
Study design. This study employed a comparative design, evaluating four deep learning architectures for 
vocal tract segmentation using an open-source dataset of 3D-MRI scans of French speakers.
Methods. Fifty-three vocal tract volumes from 10 French speakers were manually annotated by an expert 
vocologist, assisted by two graduate students in voice science. These included 21 unique French phonemes and 
three unique voiceless tasks. Four state-of-the-art deep learning segmentation algorithms were evaluated: 2D 
slice-by-slice U-Net, 3D U-Net, 3D U-Net with transfer learning (pre-trained on lung CT), and 3D transformer 
U-Net (3D U-NetR). The STAPLE algorithm, which combines segmentations from multiple annotators to 
generate a probabilistic estimate of the true segmentation, was used to create reference segmentations for 
evaluation. Model performance was assessed using the Dice coefficient, Hausdorff distance, and structural 
similarity index measure.
Results. The 3D U-Net and 3D U-Net with transfer learning models achieved the highest Dice coefficients (0. 
896 ± 0.05 and 0.896 ± 0.04, respectively). The 3D U-Net with transfer learning performed comparably to 
the 3D U-Net while using less than half the training data. It, along with the 2D slice-by-slice U-Net models, 
demonstrated lower variability in HD distance compared to the 3D U-Net and 3D U-NetR models. All models 
exhibited challenges in segmenting certain sounds, particularly /kõn/. Qualitative assessment by a voice expert 
revealed anatomically correct segmentations in the oropharyngeal and laryngopharyngeal spaces for all models, 
except the 2D slice-by-slice U-NET, and frequent errors with all models near bony regions (eg, teeth).
Conclusions. This study emphasizes the effectiveness of 3D convolutional networks, especially with transfer 
learning, for automatic vocal tract segmentation from 3D MRI. Future research should focus on improving the 
segmentation of challenging vocal tract configurations and refining boundary delineations.
Key Words: MRI–Vocal tract–Segmentation–Deep learning–Open-source annotated database.  

INTRODUCTION
Vocal production involves intricate modulations of the 
human vocal tract’s shape by various articulators, in
cluding the lips, velum, and tongue. To analyze these shape 
changes (eg, in normal and impaired speech, or in singing), 
researchers have increasingly utilized modalities, including 
electromagnetic articulography (EMA),1 endoscopy,2

projection X-ray,3 X-ray computed tomography,4 ultra
sound,5 and magnetic resonance imaging (MRI).6,7

Among these, MRI has emerged as a powerful tool due to 
its noninvasive nature, flexibility in imaging orientation, 
ability to image deep vocal structures, and suitability for 
longitudinal studies.8,9 However, MRI is relatively slow 
compared with other modalities, potentially prolonging 
data acquisition. Recent advancements in accelerated MRI 
techniques, such as parallel imaging with custom neck coils 
and compressed sensing, have enabled rapid imaging of the 
entire vocal tract during sustained speech sounds, com
pleting volumetric scans in under 15 seconds within one 
exhalation.10–13 These accelerated protocols have fa
cilitated the creation of open-source volumetric scans of the 
vocal tract during sustained speech. Notable examples in
clude a 10-speaker database producing various French 
language phonemes13 and a 75-speaker database producing 
several English language vowels and consonants.11

Quantitative assessment of vocal tract posture modula
tion, such as through 3D vocal tract area functions and 2D 
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mid-sagittal vocal tract area change analysis, has informed 
numerous voice and speech applications. These include 
understanding speaker-to-speaker variability,14–16 devel
oping and optimizing vocal tract models for voice synth
esis,17,18 and conducting acoustic and aerodynamic studies 
of 3D-printed vocal tracts derived from MRI data.19–21

Accurate segmentation of the vocal tract from MRI data is 
crucial for these analyses. The vocal tract airspace in 3D 
MR images appears opaque in contrast to the gray soft 
tissues. To access vocal tract posture, the soft tissues and 
the comprised airspace are typically segmented via manual 
annotation. However, this method is time- and labor-in
tensive as well as error-prone. Producing an accurate vocal 
tract segmentation may require 90 minutes (or more) of 
manual editing, and studies of manually segmented vocal 
tracts typically have small sample sizes and therefore weak 
statistical power.

Early segmentation approaches relied on methods like 
region growing,22–24 active appearance models (AAMs),25,26

level set,27 and model-based template methods.28,29 These 
methods often require significant manual intervention or are 
limited in their ability to handle the complex anatomical 
variations across individuals and different imaging proto
cols. For example, region growing methods rely on manual 
initialization of seed points, and often warrant manual 
correction of segmentations at spatial locations with low 
signal to noise, low resolution, and fuzzy boundaries se
parating soft tissues and airspace. AAMs, level set, and 
template methods rely on manual identification of segmen
tation boundaries in a template image, and allow them to be 
deformed across the remaining images. It has largely been 
applied on 2D plus time data, and not on 3D volumetric 
vocal tract data due to difficulty in characterizing complex 
3D vocal tract anatomy by using a single 2D template slice.

Recent advancements in deep learning have led to the 
development of automatic segmentation methods on 2D 
mid-sagittal dynamic MRI data during free-running 
speech, and on 3D volumetric vocal tract MRI data during 
sustained speech.30–39 These methods were applied to seg
ment vocal tract airspace, pharyngeal airspace, or segment 
soft-tissue structures (eg, lips, tongue, and velum). Ruthven 
et al developed custom 2D U-Net architectures for seg
mentation of vocal tract structures (head, velum, jaw, 
tongue, and tooth space) on 2D plus time mid-sagittal data, 
and have also released ground truth segmentations from 
five healthy volunteers as open source.39 Erattakulangara 
et al developed 2D U-Net architecture for vocal tract seg
mentation in mid-sagittal plane of a 3D volume, and uti
lized training with 75 slices across 10 speakers.31 Liping Xie 
et al developed 2D U-Net architectures with custom loss 
functions for a multitude of upper-airway MR segmenta
tion tasks involving different kinds of datasets.35,36 These 
included segmentation of sections of upper airway relevant 
in sleep apnea (eg, oropharyngeal, hypopharyngeal, 
and supraglottic/glottic airspace) from static 3D 
MRI, segmentation of deforming pharyngeal airspace in 
both 2D plus time mid-sagittal, and 3D plus time 

volumetric dynamic data. They also leveraged local 
neighborhood contextual relations by processing a slice of 
interest along with its two immediate spatial/or temporal 
slices (on either side) to predict its segmentation, and used a 
large, diverse database of upper-airway MR images to train 
their models (eg, up to 30 subjects with up to 7544 slices). 
Bommineni et al used 2D U-Net architectures to segment 
10 obstructive sleep apnea (OSA)-relevant anatomical 
structures in 3D T1-weighted MRI in static posture, and 
automatically quantified risk factors in OSA (eg, size of 
soft palate, volume of tongue fat). Their study incorporated 
datasets from 234 participants enrolled in various clinical 
sleep studies, and after data curation, their deep learning 
model employed data from 206 participants for training 
and testing.38 To address efficient training with limited 
annotated samples, Erattakulangara et al developed small 
data-based transfer learning 2D U-Net models to segment 
tongue, velum, and vocal tract airspace from mid-sagittal 
2D plus time dynamic datasets.32 This study showed reli
able segmentations across three different MRI acquisition 
and reconstruction protocols with training sizes as few as 
20 annotated samples.

Despite the progress made in deep learning methods for 
upper-airway MRI segmentation, several factors limit the 
widespread applicability of these methods in 3D vocal tract 
segmentation from volumetric dynamic MRI data during 
sustained speech. First, current deep learning models for 
3D upper-airway MR segmentation require large amounts 
of labeled training data (eg, few 1000’s of slices).35,38

Moreover, the data used in these models were taken from 
sleep studies where the target region of interest is the 
pharyngeal airspace relevant in OSA. This region of in
terest does not encompass the entire vocal tract airspace 
(beginning at the glottis and terminating at the lips). 
Second, due to the niche nature of upper-airway research, 
there is a scarcity of open-source labeled upper-airway 
segmentation datasets, making it challenging and time- 
consuming to adapt current models to other applications. 
To the best of our knowledge, only the work of Ruthven 
et al has open-source labeled vocal tract and articulators on 
mid-sagittal 2D plus time MRI data on five English 
speakers,39 and the work of Birkholz et al has 3D vocal 
tract shapes from two speakers sustaining German speech 
sounds.19 There are no other open-source annotated vocal 
tract volumes from 3D-MRI data during sustained voicing. 
Third, the majority of current models employ 2D con
volutional neural networks to segment 3D volumes by sli
cing them into multiple frames, or by processing them 
along with immediate neighbors. The use of 2D convolu
tions cannot fully leverage features or relationships in 3D 
space, potentially leading to nonanatomical and incon
sistent segmentations. To address these challenges, we 
make the following contributions in this paper: 

1. We develop an open-source manually labeled 3D 
vocal tract database from the French speaker data
base.13 We provide annotations of 53 vocal tract 
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volumes (or 1696 2D slices with 32 slices per volume) 
manually segmented from 10 speakers producing dif
ferent French phonemes and voiceless tasks. A total of 
21 unique phonemes and three unique voiceless tasks 
were included. These segmentations were performed 
by a team of vocologists with expertise in vocal 
anatomy, supervised by one of the authors (D. 
Meyer). The resulting database adds diversity in the 
field of speech and voice science, which is largely 
dominated by English speakers.

2. We evaluate the performance of four state-of-the-art 
deep learning segmentation algorithms, including 

a. the slice-by-slice 2D U-Net method employing 2D 
convolutions;

b. the 3D U-Net method employing 3D convolutions;
c. the 3D U-Net method leveraging transfer learning 

by pre-training with open-source annotated sam
ples from another lung CT imaging application;

d. the 3D transformer U-Net model.

These models were chosen because they represent the 
state of the art in upper-airway MR segmentation literature 
(including the slice-by-slice 2D U-Net method and transfer 
learning models) and also serve to benchmark the utility of 
3D models. Specifically, the 3D U-Net, which relies on 3D 
convolutions to leverage 3D spatial features, has been 
shown to be superior to the 2D slice-by-slice U-Net in other 
medical image segmentation tasks. Additionally, the 3D U- 
NetR model employs vision transformers for pattern re
cognition instead of conventional convolutions. This ap
proach has the potential to capture long-distance 
relationships between features in a 3D volume, though it 
has not yet been demonstrated in upper-airway MRI seg
mentation. 

1. We quantitatively evaluate segmentations from the 
above algorithms against ground truth segmentations 
created by the simultaneous truth- and performance- 
level estimation (STAPLE) method,40 which mitigates 
inter-user human variability while creating ground 
truth segmentations. In this work, we used manual 
segmentations by three human experts who created 
them independently using the Slicer software and, 
computed a STAPLE probabilistic estimate of the true 
segmentation.

2. We provide open-source code of the above four 
models to facilitate ease of reproducibility by other 
researchers.

METHODS
Datasets and preprocessing
Datasets used in this work were divided into two parts: the 
pre-training dataset, and the training dataset. The pre- 
training dataset contains data that were used for pre- 
training the 3D U-NET transfer learning network, and is 
sourced from the publicly available Pulmonary Fibrosis 

Competition dataset at the Open-Source Imaging 
Consortium (OSIC).41 This dataset includes chest CT scans 
and associated clinical information for a set of patients. A 
subset of this dataset (110 volumes) was manually seg
mented by Konya et al.42 These segmentations included 
segmentations of the lungs, heart, and the trachea. 
About 40 volumes and their corresponding lung segmen
tations from this dataset were randomly selected for this 
study. For training, we utilized a multimodal dataset con
sisting of upper-airway MRI scans of healthy French 
speakers.13 This dataset is unique within the domain of 
speech MRI studies, as most datasets typically include only 
English speakers. The dataset comprises 2D mid-sagittal 
dynamic, and 3D vocal tract volumetric samples from 10 
healthy native French speakers. Each 3D scan had a 
duration of 7 seconds and was acquired using a Siemens 
Prisma 3 T scanner with a VIBE sequence (TR = 3.8, 
TE = 1.55, FOV = 22 × 22 cm², slice thick
ness = 1.2 mm, and image size = 320 × 290 × 36 
slices). In total, the dataset contains approximately 750 
volumes, and we utilized only 53 3D volumes from all 10 
subjects, considering the time required for manual anno
tation. Typical manual segmentation times range from 30 
to 40 minutes per volume, depending on the complexity of 
the segmentation. A total of 21 unique French phonemes 
and three unique voiceless tasks were included. For 
training and validation, seven speakers were used, while 
three subjects were reserved for testing. Figure 1 illustrates 
examples from corresponding pre-training, training, and 
testing datasets along with their corresponding segmenta
tions. We have aimed to choose training and testing data 
from all these volumes that provide different speech tasks. 
Adding a wider range of data provides more robust fea
tures to the network. Tables 1A and 1B show the types of 
voiced and voiceless tasks we have chosen.

Prior to training and testing, different preprocessing 
methods were applied to CT and MRI volumes, respec
tively. For CT volumes, the voxel intensities were first 
clamped to the range of − 1000 to 1000 of their original 
values. Subsequently, they were scaled to a range of 0 to 
255 to represent pixel intensities. The segmentation maps 
corresponding to these CT volumes were binarized, with 0 
representing the background and 1 representing the lung 
segmentation label. Similarly, for the MRI dataset, analo
gous preprocessing steps were undertaken. However, in 
addition to the aforementioned steps, gradient anisotropic 
diffusion (GAD)43 was applied to reduce noise in the MRI 
data. Following this, voxel intensities were clamped to the 
range of 0 to 255. Furthermore, a cropping of 70% was 
applied specifically for MRI datasets to focus on the upper 
airway. Finally, both CT and MRI datasets were sampled 
to a size of 256 × 256 × 32 voxels. For deep learning 
models, maintaining fixed input dimensions across training 
and testing datasets is often necessary, requiring resam
pling or cropping to match the selected voxel size. Ad
ditionally, image sizes are commonly chosen as powers of 
2, as most convolutional operations are optimized for such 
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dimensions, helping prevent processing inefficiencies within 
the neural network. The original volumes had dimensions 
of 320 × 290 × 36 slices. After applying 70% cropping in 
the sagittal plane to focus on the upper airway, the images 
were resampled to a final size of 256 × 256 × 32. This 
selection balances resolution retention, computational ef
ficiency, and memory constraints. Specifically, we mildly 
downsampled in the lateral direction while upsampling in 
the superior-inferior direction, ensuring a trade-off between 
preserving anatomical details and optimizing deep learning 
performance. We performed preprocessing steps in the 
Slicer environment equipped with Simple ITK libraries.44

Data annotation
The open-source volumetric French speaker MRI datasets 
lacked manually annotated airway segmentations that are 
needed to train a supervised deep learning segmentation 

algorithm. We selected a cohort of 53 volumes spanning a 
range of speech tasks, including 21 unique French pho
nemes, and three unique voiceless tasks. These were 
manually segmented in a two-stage process by an anno
tator team with expertise in voice science. First, the vo
lumes were distributed to two graduate students in voice 
science who performed the initial draft segmentations. 
Next, the draft segmentations were further reviewed slice 
by slice, and if any mistakes or missing regions were found, 
they were resegmented by an expert vocologist with more 
than 20 years of experience in voice anatomy and singing 
voice pedagogy (co-author: D. Meyer). All processing was 
done in the 3D Slicer environment. Subsequently, the seg
mentations and the original MRI volumes underwent 
conversion into NRRD format. For training, we have used 
a subset of 45 volumes across seven subjects from these 53 
volumes.

Assessing the performance of an algorithm using anno
tated label maps from a single human expert as a reference 
poses challenges in evaluation due to potential bias in
troduced by the human. To mitigate this challenge, we 
employed the Simultaneous Truth and Performance Level 
Estimation (STAPLE) algorithm.45 This method treats 
each annotator’s segmentation as a noisy observation of an 
unknown true segmentation and iteratively estimates both 
the sensitivity and specificity of each annotator. Using an 
expectation-maximization approach, STAPLE computes a 
probabilistic estimate of the true segmentation by max
imizing the likelihood of the observed annotations. In 
creating the test set, we selected eight volumes from three 
subjects (nonoverlapping with the training set) and col
lected manual segmentations from three different annota
tors. The first two annotators were graduate students with 
expertise in image processing and biomedical engineering, 
and segmentations from a third annotator were those 
provided by the voice science team as described above. 
These segmentations were used in the STAPLE algorithm 

FIGURE 1. Sample images from the training and testing datasets. The first column displays a sample from the CT dataset used for pre- 
training the 3D U-Net transfer learning model. Columns 2 and 3 show samples from the training dataset used for all other neural 
networks. The color maps indicate the segmentation overlaid on the mid-sagittal section for MRI and the mid-axial cut of the CT dataset. 
Testing was conducted on three subjects not included in the training dataset. Sample vocal tract postures across speech postures from these 
subjects are shown in columns 4–6. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)

TABLE 1A.  
Shows the Testing Dataset with Different Phoneme 
Positions During Sustained Voicing 

File 
name

Subject 
number

Phoneme/ 
Position

In the 
context of 
phoneme

Word 
example

9 4 /oe/ peur
a 5 /a/ pas
UP 6 Tongue 

pushed 
against 
upper teeth

fa 4 /f/ /a/ fa
li 4 /l/ /i/ lit
kon 6 /k/ /o / con
nu 5 /n/ /u/ nous
sh2 4 /ʃ/ /ø/ cheveu

Notes: The phoneme contexts and word examples are also shown.
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to generate a consensus segmentation. The input segmen
tations from the various manual annotators and their 
corresponding STAPLE output are illustrated in Figure 2.

The collection of French speaker sounds utilized from the 
French speaker database for constructing the testing and the 
training datasets in this study are detailed in Tables 1A and 
1B. We selected a diverse set of phonemes across all the 
speakers. We use the same notations and format as reported 
in the original work, but explicitly detail the subject ids to 
highlight the subjects used in training are distinct from those 
used in testing.

Data augmentation
To augment the training dataset and increase its diversity, 
three types of data augmentations are applied during the 
creation of the training dataset: (1) noise addition: 
Gaussian noise ranging from standard deviation of 0 to 
0.01 was added to all 3D volumes; (2) flipping: volumes 
were flipped by 180 degrees, enhancing the variability of the 
dataset; (3) rotation: random rotation within the range of 

− 10 to 10 degrees was applied to the volumes, further 
augmenting the dataset. These augmentation techniques 
contribute to the robustness and generalization ability of 
the neural network model by introducing variations in the 
training data.

Evaluation and metrics
The model’s performance was evaluated against three 
subjects, which were used as testing sets. Instead of directly 
using one manual segmentation, we employed the STAPLE 
method, to generate the reference segmentation. Eight vo
lumes across different speech postures were selected. We 
used the below quantitative metrics to evaluate the network 
performance.

Dice coefficient
A statistic used to measure the similarity between two 
sets.46 In image segmentation, it evaluates the overlap be
tween two segmented regions: a predicted segmentation 

TABLE 1B.  
Shows the Training Dataset with Different Phoneme Positions During Sustained Voicing 

File name Subject numbers Phoneme/Position
In the context of 
phoneme Word example

DOWN 2 Tongue pushed against lower 
teeth

CONTACT 2 Incisors in contact
UP 2 Tongue pushed against upper 

teeth
e 7 /e/ p (letter of the French 

alphabet)
a 10 /a/ pas
o 1 /o/ peau
y 2 /y/ pu
an 2 / / pan
ri 8 /ʁ/ /i/ riz
ren 1 /ʁ/ / / rein
pi 2, 7, 10 /p/ /i/ pis
pa 1, 2, 7, 10 /p/ /a/ pas
pu 1, 7 /p/ /u/ pou
py 1, 2, 7 /p/ /y/ pu
tu 1 /t/ /u/ tout
ki 8 /k/ /i/ qui
ka 2, 7 /k/ /a/ cadeau
ko 7, 8 /k/ /o/ colonie
ku 7, 8 /k/ /u/ cou
k2 7 /k/ /ø/ queue
shE 8 /ʃ/ /ε/ chaise
sa 1 /s/ /a/ sa
so 7 /s/ /o/ sceau
s2 8 /s/ /ø/ ceux
fi 1, 10 /f/ /i/ fit
mi 7, 8, 10 /m/ /i/ mie
ma 1, 7 /m/ /a/ ma
mon 8 /m/ /o / mon
wa 2, 7, 10 /w/ /a/ voiture

Notes: The phoneme contexts and word examples are also shown.
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(eg, from an algorithm) and a ground truth segmentation 
(eg, a manual segmentation by an expert). It ranges from 0 
to 1, where 0 indicates no overlap and 1 signifies perfect 
agreement. The calculation involves twice the area of 
overlap divided by the total number of pixels in both 
images.

=
+

Dice A B
A B

A B
( , )

(2 | |)
(| | | |)

Structural similarity index measure
This measure tries to capture how a human would perceive 
the differences between two images, taking into account the 
structure of the images.47 It is based on the idea that the 
human visual system is highly sensitive to structural in
formation. Structural similarity index measure (SSIM) 
considers three factors: luminance, contrast, and structure. 
Two images might have the same average brightness and 
contrast, but if the patterns within the images are different, 
SSIM will be lower. The SSIM Index for 3D volumes ty
pically ranges from − 1 to 1, where a score of 1 signifies 
perfect similarity between the volumes, 0 indicates no si
milarity, and − 1 denotes complete dissimilarity

µ µ
µ µ

=
+ +

+ + + +
SSIM x y

c c

c c
( , )

((2 )(2 ))

(( )( ))
x y xy

x y x y

1 2

2 2
1
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2

where μx and μy are the mean intensities of images x and y, 
respectively. σxy is the covariance between x and y. σx² and 

σy² are the variances of x and y, respectively. c1 and c2 are 
constants to stabilize the division.

Hausdorff distance
The Hausdorff distance (HD) is a metric used to measure 
how similar two sets of points are.48 Informally, it mea
sures the greatest distance between a point in one set and 
the closest point in the other set, and vice versa. It is par
ticularly useful when comparing shapes or segmentations, 
as it considers the overall “closeness” of the sets, rather 
than just point-to-point correspondences. A smaller 
Hausdorff distance indicates greater similarity between the 
sets. Formally, given two sets X and Y in metric space, the 
Hausdorff distance d X Y( , )H .  

dH(X,Y) = max{supx∈X in fy∈Y d(x,y),supy∈Y in fx∈X d(x,y)}                    

This equation can be interpreted as follows: For each 
point in X, find the closest point in Y and calculate the 
distance and take the supremum (least upper bound) of all 
these distances. Repeat with X and Y swapped. The 
Hausdorff distance is the maximum of these two values.

Network architectures
We evaluated four variations of the U-Net architecture as 
distinct networks. The original U-Net architecture,49 in
troduced by Ronneberger et al (2015), has achieved wide
spread recognition and adoption within the field of 
biomedical image segmentation. Its innovative design, 

FIGURE 2. Representation of the STAPLE method to create ground truth segmentations. Columns 1–3 show individual manual user 
segmentations respectively from three different manual users. Each row shows example vocal tract postures from three different subjects in 
the French speaker database. The final ground truth segmentation is generated using a probabilistic voting-based STAPLE algorithm by 
combining the three user segmentations to mitigate inter-user variability.

Journal of Voice, Vol. xx, No. xx, xxxx  6  



characterized by a U-shaped network of convolutional 
layers, effectively captures both high-level contextual in
formation and fine-grained spatial details. This ability to 
integrate multiscale information has proven particularly 
advantageous in tasks requiring precise delineation of 
anatomical structures or pathological regions, as demon
strated by its successful application in various segmenta
tion challenges.50–52

2D slice-by-slice U-Net
The 2D slice-by-slice U-Net is a variant of the U-Net ar
chitecture designed specifically for 2D medical image seg
mentation within 3D volumes, such as CT or MRI 
scans.31,38,53 In this approach, the 3D volume is processed 
one slice at a time, treating each 2D slice as an independent 
input to the network. The network architecture follows an 
encoder-decoder structure with skip connections. The en
coder gradually reduces the spatial dimensions of the input 
slice while extracting features through convolutional and 
pooling layers. On the other hand, the decoder upsamples 
these features back to the original input size using trans
posed convolutions, while also incorporating skip connec
tions from the encoder to preserve spatial information. 
This slice-by-slice processing allows the network to focus 
on the details within each 2D slice, which is advantageous 
for certain medical images where important features are 
primarily in the plane of the slice. However, it may over
look contextual information provided by neighboring 
slices, which could be relevant for accurate segmentation in 
some cases.

3D U-Net
In medical imaging, the 3D U-Net (Figure 3B) extends the 
original 2D U-Net to process 3D volumes.50 It consists of 
an encoder (downsampling path) and a decoder (upsam
pling path). The encoder progressively reduces the spatial 
dimensions (height, width, and depth) of the input image 
while increasing the number of feature channels (feature 
maps) to capture high-level contextual information. The 
decoder then reconstructs the segmentation by progres
sively restoring spatial resolution while reducing the 
number of feature channels. This final stage produces the 
segmentation predictions. We employed the Dice coeffi
cient (DC) as the common loss function for all U-Net ar
chitectures.

3D U-Net with transfer learning
In this approach, the previously mentioned 3D U-Net is 
first pre-trained using the OSIC lung dataset for lung seg
mentation.32 Subsequently, the top layers of this network 
are frozen, and the bottom layers are retrained using a 
French speaker dataset. For transfer learning, only 20 
samples from the French speaker dataset were utilized. 
From our previous research,32 we found that going below 

20 samples for retraining can significantly introduce non
anatomical segmentations. Pre-training enables the net
work to grasp low-level features specific to biomedical 
images, such as pixel intensity differences. Meanwhile, 
more abstract features are gleaned from the training da
taset (French speaker dataset). This method allows for 
training the network with a small number of samples from 
the target dataset. This approach has been successfully 
implemented in prior work for segmenting vocal tract in 
2D mid-sagittal dynamic MRI and has demonstrated the 
ability to achieve segmentation quality comparable to that 
of larger datasets.32

3D U-NetR
A transformer-based variant of the U-Net architecture.51

Standard convolutional neural networks, while effective for 
local feature extraction, are limited in their ability to cap
ture long-range dependencies within an image. The U- 
NetR addresses this limitation by incorporating a trans
former encoder. Inspired by the success of transformers in 
natural language processing, the U-NetR treats the 3D 
image volume as a sequence, allowing the transformer to 
learn relationships between distant voxels and capture 
global contextual information. This transformer encoder is 
integrated within the established U-shaped U-Net frame
work. The decoder, through skip connections at multiple 
resolutions, combines these global representations with 
finer-grained local features from earlier convolutional 
layers, producing the final, detailed segmentation output. 
This architecture therefore leverages both the local feature 
extraction capabilities of convolutions and the global 
contextual understanding afforded by the transformer, re
sulting in improved segmentation accuracy (see Figure 3D).

All the given network architectures require an input size 
of 256 × 256 × 32 voxels and corresponding segmenta
tions in the same size.

Implementation and hyperparameter tuning
Hyperparameter tuning is essential for optimizing U-Net 
model’s performance. It directly impacts crucial outcome 
indicators like segmentation accuracy (eg, Dice score), 
generalization to unseen data, and the speed and stability 
of the training process. By carefully adjusting hyperpara
meters such as learning rate, batch size, and model archi
tecture, we can significantly improve the model’s ability to 
accurately segment target structures, reduce overfitting, 
and ensure efficient resource utilization, ultimately leading 
to more robust and reliable results. In this study, all the 
networks are developed using MONAI54 on an NVIDIA 
A30 GPU. We used grid-based search to tune all the hy
perparameters for each of these networks. For the transfer 
learning network, the number of layers to be frozen was 
also considered as a hyperparameter. The hyperparameters 
evaluated in this study include the following: (1) Number of 
epochs: [60, 100, 200, 700, 1000, 1500, 50,000], (2) Steps per 
epoch: [50, 100, 150, 200], (3) Learning rate [1e,2,3e,3- 
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5], and (4) Dropout rate: [0, 0.1, 0.5]. For the transfer 
learning network, an additional hyperparameter, the 
number of layers to be frozen was also explored, with va
lues ranging from [3,5,10,15,20,25,30,35]. The optimal va
lues for each hyperparameter were determined iteratively 
by running multiple configurations across the specified 
ranges for each network.

RESULTS
Figure 4 displays the mid-sagittal slices of five re
presentative test volumes, with each column corresponding 
to a different sustained sound. The four sounds are labeled 
using phonetic symbols: /f/, /l/ /k/, /a/. The label “UP” re
presents an unvoiced (silent) task, when the tongue is in 
contact with the upper teeth. We presume this is the vocal 
posture of /n/ but that it was an unvoiced posture as in the 
original paper.13 The focus on the mid-sagittal plane in 
Figure 4 provides a clear view of the vocal tract anatomy 
and makes it easier to identify areas where the different 
models struggle to segment. Directly comparing the model 
outputs to the reference segmentation allows for a quali
tative assessment of the performance of each model. For 
example, disjoint masks, which are a type of segmentation 
error where the model identifies small, isolated areas of 
airspace that should not be included in the vocal tract 
segmentation, are visible in the third, fourth, and fifth 
columns of the third, fourth, and fifth rows. These errors 
are most apparent in the 3D U-Net, 3D U-Net with 
transfer learning, and 3D U-NetR models. The /k/ sound, 
displayed in the fourth column, appears to be particularly 
challenging, as all four models exhibit segmentation errors 
in this column. We also note that in the “UP” posture 
(voiceless task, where the tongue tip hits the surface of the 
front teeth), the airspace behind the velum is missed by all 
the models. This may be attributed to the low number of 
voiceless tasks in the training data (only three of the 45 
volumes), and the models may have learnt patterns present 
from the sustained voicing tasks dominant in the training 
data, where the velopharyngeal port is closed.

Figure 5 provides a three-dimensional visualization of 
the vocal tract airspace volume for the same five test vo
lumes depicted in Figure 4. This figure allows for a more 
holistic assessment of the segmentation results, taking into 
account the overall shape and curvature of the vocal tract 
airspace. The 3D U-NetR model generated numerous 
nonanatomical segments that deviate significantly from the 
reference segmentation. The segmentations produced by 
the 2D slice-by-slice U-Net model often had rough edges 

and, in some cases, included large, nonanatomical seg
ments. One notable example is the segmentation for the /a/ 
sound (last column of Figure 5), where the 2D slice-by-slice 
U-Net model incorrectly includes a large portion of the 
area near the epiglottis in the segmentation. Visually, the 
3D U-Net and the 3D U-Net with transfer learning models 
produced very similar segmentations. However, the 3D U- 
Net model required 45 training volumes, while the 3D U- 
Net with transfer learning model only needed 20 training 
volumes to achieve comparable results. This finding sug
gests that transfer learning could be a valuable strategy for 
vocal tract segmentation with limited annotated samples.

Table 2 displays the quantitative segmentation results for 
the four models across eight volumes. The metrics used to 
evaluate performance include Dice coefficient, Hausdorff 
distance (HD distance), and structural similarity index 
measure (SSIM Index). Individual volume performance as 
well as the average and standard deviation for each metric 
are included. The 2D slice-by-slice U-Net model con
sistently achieved lower Dice values than the other three 
methods, with an average score of 0.823 ± 0.05. The 3D 
U-Net and the transfer learning 3D U-Net models both 
achieved the highest average Dice scores (0.896 ± 0.05 
and 0.896 ± 0.04, respectively). The results of SSIM show 
similar trend as the Dice scores. The table highlights that 
volumes 8 (/ʃ/) and 3 (“UP”) consistently have the lowest 
Dice scores across all models, with volume 8 showing the 
most significant discrepancy. The 2D slice-by-slice U-Net 
method achieved a relatively consistent performance for 
HD distance with an average of 11.3 ± 5.4, lower than 
the 3D U-Net (14 ± 28) and the transfer learning 3D U- 
Net (15 ± 24.9). The 3D U-Net transfer learning model 
showed the best HD distance with an average of 
(3.95 ± 5.2). Despite the higher average Dice scores, the 
3D U-Net and 3D U-NetR methods showed greater 
variability in HD distance (note considerably higher stan
dard deviations), which might indicate inconsistencies in 
the model’s ability to delineate boundaries.

A qualitative assessment of the network results was 
performed by the co-author D. Meyer, an expert vocolo
gist. In this context, “acceptable” refers to segmentations 
that align well with anatomical structures, without in
troducing nonanatomical errors. The voice expert assessed 
acceptability by examining both mid-sagittal slices and 
volumetric surface renders, identifying any segmentation 
artifacts or deviations from expected anatomy. Based on 
this evaluation, the segmentation of the oral cavity airspace 
was deemed acceptable for all network results, except the 
2D slice-by-slice U-Net. Similarly, the oropharyngeal and 

FIGURE 3. Showcases the diverse neural network architectures employed in this study. A. Illustrates the 2D slice-by-slice U-Net utilized 
for segmentation generation from 2D slices, featuring 2D convolution operations. B. Displays the 3D U-Net architecture incorporating 3D 
convolutions, operating on 3D volumes as input. C. Presents a customized version of the standard 3D U-Net, where initial layers are pre- 
trained with the OSIC pulmonary dataset and kept frozen to preserve information, while subsequent layers are trained on a dataset smaller 
than the size of the original training set. Lastly, (D) introduces the transformer-based U-Net, which processes input volumes by dividing 
them into multiple patches to facilitate learning and segmentation map generation for the upper airway.

Subin Erattakulangara, et al Efficacy of Deep Learning Algorithms from 3D MRI 9  



laryngopharyngeal segmentations were considered accep
table when compared with the reference segmentations. All 
models frequently mis-segmented islands of airspace in the 

tongue, lower incisors (anterior mandible), or in the pala
tine process of the maxilla (commonly known as the hard 
palate). Correctly imaging the teeth and maxilla is a known 

FIGURE 4. Mid-sagittal representations of the five test volumes used in the experiment are depicted in the first row. The second row 
presents the reference segmentation overlaid on a mid-sagittal slice for each volume. Subsequent rows display network segmentations 
overlaid on mid-sagittal slices, highlighting disjoint masks in columns two, three, and four. The specific sounds sustained during MRI 
scans (/f/, /l/, “UP”, /k/, /a/) are labeled in the first row. Nonanatomical segmentations are highlighted in red ellipses, and missed seg
mentations are highlighted by yellow arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.)
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FIGURE 5. 3D representations of the vocal tract airspace volumes generated from example speech postures in the test set. The specific 
sounds during MRI scans (/f/, /l/, “UP”, /k/, /a/) are labeled in the first row. The second row shows the reference segmentation, while 
subsequent rows depict outputs from various neural network segmentations. The airway segmentation is highlighted in green, and 
nonanatomical segmentations marked with red circles. Differences in airway curvature among subjects and alterations during different 
vocalizations are observable. Differences between models are noted, particularly note the rough/leaky segmentations in the 2D slice-slice 
U-Net model near the epiglottis region (yellow arrow), and missed segmentations in thin airspace region in the /k/ sound (magenta arrows). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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challenge for MRI. These structures are low in hydrogen, 
resulting in signal voids in MRI. This issue is particularly 
relevant for segmenting the oral airspace, which is in close 
proximity to the teeth and maxilla. Glottal and supraglottal 
structures often contained mis-segmentations as well. 
Inaccuracies in this region were not unexpected due to the 
difficulty in isolating glottal landmarks in manually seg
mented MRI volumes. 3D U-Net transformer showed 
frequent nonanatomical segmentations. 3D U-Net and 
transfer learning 3D U-Net segmentations were judged to 
most closely resemble the reference segmentations in the 
glottal and supraglottic airspace.

DISCUSSION
This study provided a rich manually annotated public da
tabase of vocal tract segmentations from a cohort of 53 
volumes across 10 speakers producing French phonemes.

The study compared neural network architectures for 
segmenting the upper airway from 3D MRI, focusing on 
convolutional networks, transformers, and transfer 
learning methods. Transfer learning proved particularly 
effective in addressing the challenges of training with small 
datasets, a common problem in specialized areas where 
extensive, open-source datasets are lacking. This approach 
is especially relevant for vocal tract segmentation as it is a 
relatively niche area of research and publicly available 
annotated datasets are scarce.

The variability in manual segmentation results high
lighted the need for a consistent approach to creating 
ground truth segmentations. The STAPLE algorithm was 
employed to mitigate the potential bias introduced by in
dividual annotators. This method enhances the stability of 
quantitative metrics by generating a probabilistic estimate 
of the true segmentation based on the input of segmenta
tions from multiple human experts.

Comparisons of different U-Net architectures in medical 
imaging revealed that 3D convolutional networks con
sistently outperformed transformer-based U-Net and slice- 
by-slice U-Net architectures. This suggests that 3D con
volutional networks are well-suited for medical imaging 
applications where datasets may be limited, as they can 
effectively learn from smaller amounts of training data. 
Both the 3D U-Net and the 3D U-Net with transfer 
learning achieved high average Dice coefficients (0.896 ± 
0.05 and 0.896 ± 0.04, respectively). Importantly, the 
transfer learning approach achieved performance compar
able to the standard 3D U-Net while using less than half 
the training data. This underscores the potential of transfer 
learning to optimize resource utilization in vocal tract 
segmentation tasks. The 2D slice-by-slice U-Net con
sistently produced lower Dice coefficients than other 
methods (0.823 ± 0.05 on average). While this archi
tecture can effectively segment individual 2D slices, it is 
limited in its ability to leverage contextual information 
from neighboring slices, which could be contributing to its 
lower performance. The 3D Transformer U-Net is designed 
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to capture long-range spatial dependencies, however, in 
this work, it generated nonanatomical segmentations that 
deviated significantly from the ground truth. This suggests 
that the transformer architecture may not be as well-suited 
for this specific segmentation task, potentially due to the 
complexity of the vocal tract anatomy and limited 
training data.

A qualitative assessment by a voice expert revealed that 
all methods appeared to delineate the oral airspace, except 
the 2D slice-by-slice U-Net. All models frequently in
correctly segmented islands of airspace in the tongue or 
hard palate, as well as the supraglottic space. These errors 
are likely attributed to the difficulty in clearly identifying 
anatomical landmarks in MRI, particularly in the glottal 
and supraglottic regions. The presence of teeth in the vocal 
tract results in signal voids and poses a challenge for MRI 
analysis, especially for segmentation of the oral airspace 
that is in close proximity to the teeth.

We used the STAPLE method to integrate segmentations 
from three annotators to estimate a probabilistic ground truth 
in the testing set. However, STAPLE can be sensitive to 
systematic errors; if annotators make consistent mistakes, the 
algorithm may reinforce rather than correct them, leading to 
deviations from the true segmentation. While STAPLE 
weights annotators by reliability, frequent biases can still af
fect the final result. To mitigate this, we selected a diverse set 
of annotators with expertise in upper-airway anatomy: two 
biomedical engineering graduate students with experience in 
image processing and upper-airway anatomy, and a vocolo
gist with 20 years of voice science pedagogy experience.

Our study has a few noteworthy limitations. First, the 
small size of the training dataset is a potential limitation. 
While data augmentation techniques were employed to 
increase the diversity of the training data, the relatively 
small number of annotated volumes (45 for training) may 
have limited the models’ ability to generalize to unseen 
data, which is particularly challenging in vocal tract seg
mentation. A larger and more diverse training dataset en
compassing a wider range of speakers, phonetic contexts, 
and vocal tract postures would likely improve the accuracy 
and robustness of the models. Secondly, we utilized a 
specific MRI acquisition protocol for the French speaker 
dataset. The performance of the trained models may vary 
when applied to data acquired using different MRI scan
ners, sequences, or parameters. While the transfer learning 
model may be a useful approach to address this limitation, 
further research is necessary to assess the generalizability 
across diverse MRI acquisition protocols. We also note 
noteworthy challenges by all the models for specific tasks, 
such as segmentation of vocal tract while producing the /k/ 
sound, and during unvoiced /n/ (ie, the tongue touching the 
upper teeth in the “UP” posture). These highlight the 
complexity of vocal tract anatomy and the difficulty in 
accurately segmenting highly variable and nuanced ar
ticulatory postures. Additionally, the models struggled with 
segmenting “islands of airspace,” which appear as small, 
isolated pockets of air trapped within the vocal tract. These 

islands are mis-segmentations that occurred in areas such 
as the tongue, hard palate, and supraglottic space, and are 
likely due to the limitations of low-resolution MRI in dif
ferentiating airspace from surrounding tissues. We also 
note the issue of signal voids in MRI caused by the pre
sence of teeth, which can hinder the accurate segmentation 
of the oral airspace. Teeth, being low in hydrogen content, 
have a short T2 time constant, and appear dark in con
ventional gradient echo MR imaging, making it difficult to 
distinguish them from the surrounding air. This challenge 
can lead to errors in defining the boundaries of the oral 
cavity, particularly near the teeth. Emerging techniques, 
such as zero-echo time MRI,55 which provides teeth and 
bone visualization, have promise to address this limitation.

CONCLUSION
This study investigated the efficacy of deep learning algo
rithms for automatic vocal tract segmentation from 3D MRI. 
A new open-source database of 53 manually annotated 3D 
vocal tract volumes from 10 French speakers was created, 
adding diversity to the field of voice and speech science, which 
is predominantly focused on English speakers. 3D convolu
tional neural networks, specifically the 3D U-Net and the 3D 
U-Net with transfer learning, demonstrated superior perfor
mance compared with the 2D slice-by-slice U-Net and the 3D 
transformer U-Net models. The 3D U-Net with transfer 
learning achieved high accuracy while using less than half of 
the training data required by the 3D U-Net, highlighting its 
potential utility in vocal tract segmentation. The STAPLE 
algorithm, employed to generate a probabilistic estimate of 
the true segmentation from multiple annotators, enhanced the 
reliability of the evaluation process. Qualitative analysis by a 
voice expert revealed challenges in segmenting islands of 
airspace in the tongue or hard palate, and the supraglottic 
space. These difficulties can be attributed to the limitations of 
MRI in imaging structures with low hydrogen content, such 
as teeth, and the inherent complexities of accurately defining 
glottal and supraglottic landmarks.

Data availability
The manually annotated volumes, along with their corre
sponding segmentations, are provided for download at 
Figshare (https://figshare.com/s/cb050b61c0189605feda). 
Additionally, to ensure the robustness of our method, the 
test set includes STAPLE segmentations derived from three 
distinct manual segmentations, further enriching the dataset. 
In addition to the dataset, the python code used to run the 
individual networks can be downloaded from https://gi
thub.com/eksubin/Comparative-Study-of-3D-2D-Transfer- 
Learning-UNet.
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